
基于CMIP6多模式的长江流域未来降水变化趋势分析
李晓蕾, 王卫光, 张淑林
基于CMIP6多模式的长江流域未来降水变化趋势分析
Trend Analysis of Future Precipitation in the Yangtze River Basin Based on CMIP6 Multi-Model
伴随全球气候持续增暖,长江流域生态环境和水资源极易受到影响,对该地区的未来降水变化趋势进行分析研究,可为长江流域水资源管理和生态保护提供理论依据。基于偏差校正后的第六次国际耦合模式比较计划(CMIP6)13个全球气候模式输出的降水数据以及观测降水数据,评估了1995-2014年气候模式在长江流域的降水模拟能力,并且对4个SSP情景(SSP1-2.6、SSP2-4.5、SSP3-7.0、SSP5-8.5)下长江流域2021-2040年(近期)、2041-2070年(中期)以及2071-2100年(末期)的降水时空变化趋势进行分析。结果表明:①偏差校正后的模式数据在时空尺度上能很好地模拟出长江流域降水的特点,与观测值较为接近;②未来情景下长江流域年降水量随着辐射强迫水平的上升,增加趋势越大。相对于历史时期(1995-2014年),各情景下流域年降水在近期的增长都比较平缓,在末期降水增幅最大。季节降水总体表现为冬季变化率最大,春夏季降水增幅较平缓,秋季除了SSP3-7.0情景下前期的降水变化率为负值,其他情景和时段下都以较低的变化率缓慢增长。③空间上,年降水变化率较大的区域集中在降水相对较少的长江源区和中上游地区;春季降水变化率高值中心在源头区和中上游北部地区,而在流域的南部地区降水变化率较低;夏季和秋季的降水增量偏低,在中上游北部地区近期和中期降水量都较历史时期的有所下降;在冬季,全流域的降水都有增加,表现为长江流域北部地区降水变化率最大,南部地区变化率偏小。
With the continuous warming of the global climate, the ecological environment and water resources in the Yangtze River Basin are apt to be affected. The analysis and study of the future precipitation change trend in the region will help to provide a theoretical basis for water resources management and ecological protection in the Yangtze River Basin. Based on the observed precipitation data and precipitation data output from 13 global climate models of the Sixth International Coupled Model Comparison Program (CMIP6) with bias correction, this paper evaluates the precipitation simulation ability of climate models in the Yangtze River Basin from 1995 to 2014.The temporal and spatial variation trends of precipitation in 2021-2040 (near term), 2041-2070 (middle term), and 2071-2100 (long term) are analyzed under four SSP scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5).The results show that: ① The model data with bias correction can simulate the characteristics of precipitation well in the Yangtze River Basin on the spatial and temporal scale, which is close to the observed values. ②The annual precipitation in the Yangtze River Basin will increase significantly with the increase in the radiation forcing level. Compared with the historical period (1995-2014), the annual precipitation growth in each scenario is relatively flat in the near term, and the precipitation growth is the largest in the long term. In general, seasonal precipitation shows the largest increase in winter, and the increase in spring and summer precipitation is relatively gentle. In autumn, except for the negative value of the precipitation change rate in the near term under the scenario SSP3-7.0, the other scenarios and periods are slowly increasing with lower change rates. ③Spatially, the regions with larger annual precipitation increase are concentrated on the source region of the Yangtze River and the middle and upper reaches of the Yangtze River with relatively less precipitation. The high value center of spring precipitation increase is in the source area and the north of the middle and upper reaches, while the precipitation change rate is low in the south of the basin. The precipitation increment in summer and autumn is relatively low, and the near term and middle-term precipitation in the northern part of the middle and upper reaches is lower than that in the historical period. In winter, the precipitation in the whole basin has increased, which shows that the precipitation change rate in the north of the Yangtze River Basin is the largest, and it is smaller in the south.
长江流域 / CMIP6 / 气候变化情景 / 降水 {{custom_keyword}} /
Yangtze River Basin / CMIP6 / climate change scenario / precipitation {{custom_keyword}} /
表1 13个CMIP6 气候模式的信息Tab.1 Information of 13 CMIP6 models |
机构 | 国家 | 模式名称 | 网格分辨率 |
---|---|---|---|
CSIRO | 澳大利亚 | ACCESS-ESM-5 | 192×145 |
BCC | 中国 | BCC-CSM2-MR | 320×160 |
CCCma | 加拿大 | CanESM5 | 128× 64 |
NCAR | 美国 | CESM2-WACCM | 288×192 |
CMCC | 意大利 | CMCC-CM2-SR5 | 288×192 |
欧洲EC-Earth联盟 | 瑞典 | EC-Earth3-Veg | 512×256 |
INM | 俄罗斯 | INM-CM4-8 | 180×120 |
INM | 俄罗斯 | INM-CM5-0 | 180×120 |
IPSL | 法国 | IPSL-CM6A-LR | 144×143 |
DKRZ | 德国 | MPI-ESM1-2-HR | 384×192 |
MPI-M | 德国 | MPI-ESM1-2-LR | 192×96 |
NCC | 挪威 | NorESM2-LM | 144×96 |
NCC | 挪威 | NorESM2-MM | 288×192 |
表2 1995-2014年长江流域不同时间尺度观测和模拟的多年平均降水量 (mm)Tab.2 Annual average precipitation observed and simulated at different time scales in the Yangtze River Basin from 1995 to 2014 |
时间 | 春季 | 夏季 | 秋季 | 冬季 | 全年 |
---|---|---|---|---|---|
观测值 | 184.89 | 241.23 | 122.42 | 59.11 | 607.65 |
模拟值 | 195.00 | 286.95 | 131.68 | 63.34 | 676.97 |
1 |
IPCC. Special report on global warming of 1.5 °C [M].UK: Cambridge University Press, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
郭广芬,杜良敏,肖莺,等. 长江流域夏季极端降水时空分布特征[J]. 干旱气象, 2021,39(2):235-243.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
时光训,刘健,马力,等. 1970-2014 年长江流域极端降水过程的时空变化研究[J].水文, 2017,37(4):77-85.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
詹明月,王国杰,陆姣,等.基于 CMIP6 多模式的长江流域蒸散发预估及影响因素[J].大气科学学报,2020,43(6):1 115-1 126.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
李佳瑞,牛自耕,冯岚,等. CMIP5 模式对长江和黄河流域极端气温指标的模拟与预估[J]. 地球科学, 2020,45(6):1 887-1 904.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
郑巍斐,程雪蓉,杨肖丽,等. 基于统计降尺度的长江上游流域降水和气温的时空变化趋势研究[J]. 中国农村水利水电, 2017(9):43-47,51.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
程雪蓉. 基于CMIP5模式预估长江上游流域气温及降水时空特征[J].水电能源科学, 2019,37(1):19-22.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
张杰,罗岚心,韩晓令,等. CMIP5模式对长江流域年降水的模拟与预估[C]//贵州省气象学会2013年学术年会论文集, 2013.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
赵煜飞,朱江.近50年中国降水格点日值数据集精度及评估[J].高原气象,2015,34(1):50-58.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
丁凯熙,张利平,佘敦先,等.全球升温1.5 ℃和2.0 ℃情景下澜沧江流域极端降水的变化特征[J].气候变化研究进展,2020,16(4):466-479.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
陈晓红,张新主,章新平,等.江南区域性极端降水长期变化及其可能原因[J].长江流域资源与环境,2020,29(8):1 757-1 767.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
李明,邓宇莹,曹富强,等.基于格点数据的黄土高原降水时空变化特征[J].东北师大学报(自然科学版),2021,53(1):130-136.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
胡义明,罗序义,梁忠民,等.基于藤Copula多维联合分布的CMIP5多模式降雨综合方法研究[J].中国农村水利水电,2021(4):10-15.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
赵梦霞,苏布达,姜彤,等.CMIP6模式对黄河上游降水的模拟及预估[J].高原气象,2021,40(3):547-558.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |