
蜗壳断面面积变化规律对离心泵性能的影响
刘厚林, 华旭辉, 马皓晨, 吴贤芳, 谈明高
蜗壳断面面积变化规律对离心泵性能的影响
The Influence of Volute Section Area Variation on Centrifugal Pump Performance
蜗壳断面面积变化规律对离心泵的水力性能有重要影响。采用CFD数值模拟的方法研究了5种蜗壳断面面积变化对泵性能的影响规律。研究结果表明N型模型水力性能最好,U型模型水力性能最差,两者的扬程和效率分别相差5.01%和9.47%;适当减缓后2个断面的面积变化速度,可以有效减小隔舌处和扩散段的低速区。随着流量的增大,蜗壳面积变化规律对压力脉动峰峰值的影响逐渐减小; U型、倒S型、线性模型的压力脉动主频均出现在叶频处, N型和S型模型的压力脉动主频在设计工况时出现在叶频处,在偏工况时出现在低于轴频处,且N型和S型模型总体压力脉动较小。在偏工况时,各模型主频处压力脉动幅值上升,且受蜗壳面积变化影响较大。整体而言,拥有良好水力性能的蜗壳应符合螺旋段尾部面积增长较慢、螺旋段前半段面积适当增大的规律。
The variation of volute section area has an important influence on the hydraulic performance of centrifugal pump. The influence of five kinds of volute section area on pump performance was studied by CFD numerical simulation. The results show that the N-type model has the best hydraulic performance and the U-type model has the worst hydraulic performance,the difference in head and efficiency is 5.01% and 9.47%,respectively.Slowing down the area change speed of the latter two sections can effectively reduce the low velocity area of the tongue and the diffusion section. Under off design condition, the influence of volute area on pressure fluctuation decreases with the increase of flow rate; The main frequency of pressure fluctuation of U-type, inverted S-type and linear models all appears at the blade frequency. The main frequency of pressure fluctuation of N-type and S-type models appears at the blade frequency under the design condition, and it is lower than the shaft frequency under the off design condition. The overall pressure fluctuation of N-type and S-type models is small.Under off design condition, the amplitude of pressure fluctuation increases at the main frequency of each model, which is greatly affected by the change of volute area. On the whole, the spiral case with good hydraulic performance should conform to the law that the area of spiral section tail increases slowly and the area of spiral section front half increases appropriately.
离心泵 / 蜗壳 / 面积 / 水力性能 / 压力脉动 {{custom_keyword}} /
centrifugal pump / volute / area / hydraulic performance / pressure fluctuation {{custom_keyword}} /
表1 离心泵结构参数Tab.1 Structural parameters of centrifugal pump |
结构 | 参数 | 数值 |
---|---|---|
叶轮 | 进口直径D 1/mm | 100 |
出口直径D 2/mm | 260 | |
叶片数Z | 6 | |
叶片包角θ/(°) | 130 | |
叶片出口宽度b 2/mm | 13 | |
蜗壳 | 基圆直径D 3/mm | 270 |
蜗壳进口宽度b 3/mm | 25 | |
出口直径D 4/mm | 80 |
表2 不同面积变化规律蜗壳的断面面积 (mm2)Tab.2 Section area of volute with different area variation law |
断面面积 | 线性 | U型 | N型 | S型 | 倒S型 |
---|---|---|---|---|---|
A 1 | 185.8 | 93.8 | 276.0 | 64.2 | 216.8 |
A 2 | 371.6 | 228.0 | 490.0 | 219.7 | 376.8 |
A 3 | 557.3 | 379.7 | 693.6 | 435.5 | 530.8 |
A 4 | 743.1 | 542.9 | 881.6 | 685.7 | 680.0 |
A 5 | 929.9 | 712.8 | 1 052.6 | 935.4 | 821.9 |
A 6 | 1 114.7 | 896.0 | 1 223.1 | 1 187.5 | 976.2 |
A 7 | 1 300.4 | 1 131.2 | 1 383.0 | 1 394.2 | 1 168.8 |
A 8 | 1 486.2 | 1 486.2 | 1 486.2 | 1 486.2 | 1 486.2 |
表3 网格相关性验证Tab.3 Grid dependence verification |
方案 | 蜗壳网格数/万个 | 叶轮网格数/万个 | 扬程/m |
---|---|---|---|
1 | 9.61 | 21.50 | 84.95 |
2 | 13.50 | 31.10 | 84.07 |
3 | 18.00 | 36.30 | 83.19 |
4 | 55.20 | 44.10 | 83.11 |
5 | 23.30 | 59.00 | 83.15 |
表4 各工况压力脉动峰峰值比较Tab.4 Comparison of pressure fluctuation peak to peak under different working conditions |
工况 | 峰峰值最大模型 | 峰峰值/Pa | 峰峰值最小模型 | 峰峰值/Pa | 差值/Pa |
---|---|---|---|---|---|
0.8 Q | U型 | 2.03×105 | N型 | 9.00×104 | 1.13×105 |
1.0 Q | U型 | 2.02×105 | N型 | 1.29×105 | 7.30×104 |
1.2 Q | U型 | 1.97×105 | N型 | 1.42×105 | 5.50×104 |
表5 各工况压力脉动主频幅值比较Tab.4 Comparison of main frequency amplitudes of pressure pulsation under different working conditions |
工况 | 幅值最大模型 | 幅值/Pa | 幅值最小模型 | 幅值/Pa | 差值/Pa |
---|---|---|---|---|---|
0.8 Q | 线型 | 70 200 | N型 | 28 193 | 42 007 |
1.0 Q | 线型 | 52 591 | S型 | 20 634 | 31 957 |
1.2 Q | 线型 | 68 900 | N型 | 31 600 | 37 300 |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
叶莉.隔舌安放角对离心泵的水动力特性影响研究[J].人民长江,2017,48(3):91-96.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
杜云水,顾青春,孙卫平,等.双蜗壳离心泵设计及喉部面积对性能的影响[J].机电设备,2009,26(5):52-54.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
赵伟国,李尚升,潘绪伟,等.蜗壳出口位置对低比转速离心泵性能的影响[J].兰州理工大学学报,2020,46(6):43-51.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
王辉,杨军虎,谷帅坤,等.蜗壳喉部面积对低比转速离心泵性能的影响研究[J].化工设备与管道,2020,57(4):62-65.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
周琦. 离心泵内部流动分析与蜗壳优化研究[D].大连:大连理工大学,2012.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
关醒凡. 现代泵理论与设计[M]. 北京:中国宇航出版社,2011:307-311
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
赵万勇,陈帅,赵强,等.蜗壳断面面积变化规律对双吸离心泵水力性能的影响[J].排灌机械工程学报,2020,38(9):871-877.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
高波,杜文强,杨丽,等.蜗壳面积变化规律对低比转数离心泵性能的影响[J].排灌机械工程学报,2017,35(9):749-754.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
尚欢欢. 离心泵轴系不对中振动特性研究[D].江苏镇江:江苏大学,2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |