
间歇灌溉缓释肥对稻田土壤肥力、根干重及产量的影响
杨鹏, 何军, 付亮, 赵帆, 周洁宇, 赵树君, 钟韵, 马煜, 程磊, 张宇航, 钟盛建, 甘学华
间歇灌溉缓释肥对稻田土壤肥力、根干重及产量的影响
The Effect of Alternate Wetting and Drying Irrigation Coupled with Slow Release Fertilizer on Soil Nitrogen and Phosphorus Content, Root Dry Matter and Yields in the Paddy Field
良好的水肥调控模式有利于土壤与作物之间进行营养元素的交换,是水稻高产的重要因素之一。为探究间歇灌溉模式施用缓释肥对稻田土壤肥力、根干重及产量的影响规律。于2019年5-9月在湖北省灌溉试验中心站开展了水稻种植测坑试验,采集淹灌(W1)、间歇灌溉(W2)和传统肥(N1)、缓释肥(N2)交互作用下黄熟期植株样株高、叶绿素SPAD值、分蘖数及稻田土样,分析土壤氮磷含量及黄熟期产量、根干重。间歇灌溉上层(0~20 cm)、下层(20~40 cm)土壤全氮含量较淹灌高2.2%~78.63%,上层土壤全磷含量较淹灌高64.27%~162.86%,下层土壤全磷含量较淹灌低30.80%~43.52%。缓释肥上、下层土壤全氮含量较传统肥低5.06%~79.95%,上、下层土壤全磷含量较传统肥低5.08%~73.92%;下层土壤全氮含量在不同肥料类型条件下差异性显著,而上层土壤全磷含量受肥料类型影响极显著。缓释肥条件可以显著提升根干重;间歇灌溉缓释肥(W2N2)处理产量最高,达10 505 kg/hm2,比最低的对照处理淹灌传统肥(W1N1)高8.53%。间歇灌溉较淹灌可以维持促进土壤上、下层全氮含量,对上层土壤全磷含量有维持和促进作用,而对于下层土壤维持作用不如淹灌;缓释肥可以促进水稻根系干物质积累,提高水稻对土壤氮、磷的吸收利用率,对有效穗数形成产生积极的影响,进而提高水稻产量。间歇灌溉和缓释肥耦合互作可以提高产量。
Good water and fertilizer regulation mode is conducive to the exchange of nutrients elements between soil and crops, which is one of the important factors for high yield of rice. In order to explore the mechanism of the effect of slow-release fertilizer on paddy soil, fertility root dry weight and yield under alternate wetting and drying irrigation conditions, pit test of rice planting was carried out in Hubei Irrigation Experiment Center Station from May to September 2019. Plant height, chlorophyll SPAD value, tiller number and soil samples were collected under the interaction of flooding irrigation (W1, CF), alternate wetting and drying irrigation (W2, AWD) coupled with traditional fertilizer (N1) and slow-release fertilizer (N2) to analyze the nitrogen and phosphorus content, yield and root dry weight at yellow ripe stage. The results show that the total nitrogen of upper layer (0~20 cm) and lower layer (20~40 cm) of AWD is 2.2%~78.63% higher than that of CF, the total phosphorus of upper layer is 64.27%~162.86% higher than that of CF, and the total phosphorus of lower layer is 30.80%~43.52% lower than that of CF. The total nitrogen in the upper and lower layers of slow-release fertilizer is 5.06%~79.95% lower than that of traditional fertilizer. Total nitrogen in lower soil is significantly different under different fertilizer types, and total phosphorus in upper soil is highly significant under different fertilizer types. Slow-release fertilizer significantly improves the dry weight of roots. AWD and slow-release fertilizer (W2N2 ) has the highest yield of 10 505 kg/hm2, AWD and slow-release fertilizer (W2N2) is 8.53% higher than that of lowest control treatment CF and traditional fertilizer (W1N1).
AWD can better maintain soil total nitrogen in the upper layer and lower layer than CF, and its effect on maintaining soil total phosphorus in the upper layer is stronger than CF. Slow-release fertilizer can promote the dry matter accumulation of rice roots, improve the uptake and utilization efficiency of nitrogen and phosphorus in soil, and have a positive effect on the formation of effective panicle number, thus increasing rice yields. AWD coupled with slow-release fertilizer can improve rice yields.
间歇灌溉 / 缓释肥 / 稻田 / 全氮 / 全磷 / 产量 / 根系干物质 {{custom_keyword}} /
AWD / slow-release fertilizer / paddy field / total nitrogen / total phosphorus / yields / root dry matter {{custom_keyword}} /
表1 淹灌W1和间歇灌W2(AWD)水层控制表Tab.1 Water layer control table for submerged irrigation W1 and alternate wetting and drying irrigation W2 (AWD) |
生育阶段 | 返青复苗 | 分蘖前期 | 分蘖后期(晒田) | 拔节孕穗 | 抽穗开花 | 乳熟 | 黄熟 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
灌溉模式 | W1 | W2 | W1 | W2 | W1 | W2 | W1 | W2 | W1 | W2 | W1 | W2 | W1 | W2 |
灌前下限(W1,mm;W2,占土壤饱和含水率的%) | 10 | 100 | 10 | 85 | 20 | 65-70 | 20 | 90 | 20 | 90 | 20 | 85 | 落 | 65 |
灌后上限/mm | 40 | 30 | 40 | 40 | 50~60 | 晒 | 50~60 | 40 | 50~60 | 70 | 50~60 | 70 | 落 | |
雨后极限/mm | 60 | 40 | 60 | 50 | 80~90 | 80~90 | 80~90 | 80~90 | 50 | |||||
间歇脱水天数/d | 0 | 0 | 0 | 3~5 | 0 | 田 | 0 | 1~3 | 0 | 1~3 | 0 | 1~3 | 干 | 干 |
表2 不同水肥处理下稻田土壤氮磷含量及根干重方差分析Tab.2 Variance analysis of nitrogen and phosphorus content and root dry weight in paddy soil under different water and fertilizer treatments |
项目 | TN | TP | 根干重 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
0~20 cm | 20~40 cm | 0~20 cm | 20~40 cm | |||||||
F值 | 差异性 | F值 | 差异性 | F值 | 差异性 | F值 | 差异性 | F值 | 差异性 | |
灌溉模式 | 2.505 | 不显著 | 0.007 | 不显著 | 4.342 | 较显著 | 1.002 | 不显著 | 1.720 | 不显著 |
施肥类型 | 0.265 | 不显著 | 6.694 | 显著 | 10.691 | 极显著 | 0.082 | 不显著 | 5.857 | 显著 |
灌溉模式×施肥类型 | 0.083 | 不显著 | 0.048 | 不显著 | 0.116 | 不显著 | 0.021 | 不显著 | 0.201 | 不显著 |
表3 不同水肥处理对水稻产量构成因素及黄熟期生态特性的影响Tab.3 Effects of different water and fertilizer treatments on yield components and ecological characteristics of rice at yellow ripe stage |
处理 | 有效穗数/(穗·m-2) | 穗粒数/粒 | 千粒重/g | 结实率/% | 实际产量/(kg·hm-2) | 株高/cm | 分蘖数/个 | 叶绿素SPAD值 |
---|---|---|---|---|---|---|---|---|
W1N1 | 237.00a | 250.10a | 22.39a | 93.95a | 9 679a | 112.33b | 12.25b | 12.18a |
W2N1 | 262.33a | 275.67a | 21.83a | 92.55a | 10 056a | 114.17ab | 13.67ab | 12.83a |
W1N2 | 277.50a | 276.87a | 21.20a | 91.79a | 10 386a | 117.50a | 15.25a | 13.17a |
W2N2 | 282.67a | 272.90a | 21.95a | 94.29a | 10 505a | 112.75b | 14.83a | 13.40a |
方差分析(F值) | ||||||||
灌溉模式 | 0.901 | 0.403 | 1.317 | 0.359 | 0.661 | 1.699 | 0.435 | 0.360 |
施肥类型 | 3.585(*) | 1.107 | 0.053 | 0.052 | 3.577(*) | 2.809 | 7.545(**) | 1.142 |
灌溉模式×施肥类型 | 0.394 | 0.085 | 1.946 | 4.518(*) | 0.178 | 8.656(**) | 1.461 | 0.078 |
1 |
彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002(9):1 095-1 103.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
陈 鹏,张忠学,陈帅宏,等.寒地黑土区节水灌溉下水稻对基肥氮素的吸收分配[J].灌溉排水学报,2019,38(2):36-43.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
吕贻忠.土壤学[M].北京;中国农业大学出版社,2006:289.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
叶会财.长期定位施肥对红壤稻田水稻生长和土壤肥力的影响[D].南昌:江西农业大学,2013.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
余 双,崔远来,王 力,等.水稻间歇灌溉对土壤肥力的影响[J].武汉大学学报(工学版),2016,49(1):46-53.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
李永松,陈基旺,袁 帅,等.节水灌溉对水稻产量和根系的影响研究进展[J].作物研究,2020,34(2):176-182.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
李远华,张祖莲,赵长友,等.水稻间歇灌溉的节水增产机理研究[J].中国农村水利水电,1998(11):12-15,46.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
茆 智.水稻节水灌溉在节水增产防污中发挥重要作用[J].中国水利,2009(21):11-12.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
张 亮,曹秀清,蒋尚明,等.间歇灌溉模式不同间歇时间下江淮丘陵区水稻耗水规律及其节水效益研究[J].节水灌溉,2020(10):6-9.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
谢世尧,孙雪梅,邹德昊,等.北方寒区水稻水肥管理技术节水减排效应研究[J].节水灌溉,2018(5):44-47,56.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
粟晓万,杜建军,贾振宇,等.缓/控释肥的研究应用现状[J].中国农学通报,2007(12):234-238.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
张耿苗,王京奇,汪东东,等.长期施用有机缓释肥对单季稻中甬优15产量与土壤养分的影响[J].浙江农业科学,2020,61(6): 1 075-1 077.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
王忠林.缓释肥对水稻甬优1540产量、土壤地力与肥料利用率的影响[J].浙江农业科学,2020,61(11):2 205-2 207.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
彭 玉,马 均,蒋明金,等.缓/控释肥对杂交水稻根系形态、生理特性和产量的影响[J].植物营养与肥料学报,2013,19(5): 1 048-1 057.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
茆 智.水稻节水灌溉及其对环境的影响[J].中国工程科学,2002(7):8-16.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
何 军,钟盛建,张宇航,等.缓释肥条件节水灌溉对水稻生态特性及产量的影响[J].节水灌溉,2020(4):17-20.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
李方敏,艾天成,周升波,等.缓释氮肥对水稻的增产效果及其氮素利用率[J].土壤通报,2004(3):311-315.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
刘宇锋. 不同灌溉方式与施肥下水稻生理、生长和土壤微生物生态研究[D]. 南宁:广西大学,2012.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
唐拴虎,杨少海,陈建生,等.水稻一次性施用控释肥料增产机理探讨[J].中国农业科学,2006(12):2 511-2 520.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
郑圣先,聂 军,戴平安,等.控释氮肥对杂交水稻生育后期根系形态生理特征和衰老的影响[J].植物营养与肥料学报,2006(2):2 188-2 194.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
刘 明,杨士红,徐俊增,等.控释氮肥对节水灌溉水稻产量及水肥利用效率的影响[J].节水灌溉,2014(5):7-10.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
崔远来,李远华,吕国安,等.不同水肥条件下水稻氮素运移与转化规律研究[J].水科学进展,2004(3):280-285.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
何 军,崔远来,吕 露,等.不同水肥调控模式对稻田土壤氮磷肥力的影响试验[J].灌溉排水学报,2011,30(4):1-4,52.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
潘 乐.水稻灌区节水防污型农田水利系统减轻农业面源水污染研究[D].武汉:武汉大学,2012.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
程建平,曹凑贵,蔡明历,等.不同灌溉方式对水稻生物学特性与水分利用效率的影响[J].应用生态学报,2006(10):1 859-1 865.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
彭世彰,郝树荣,刘 庆,等.节水灌溉水稻高产优质成因分析[J].灌溉排水,2000(3):3-7.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
李贵勇,高 森,栾鸭红,等.控释肥用量对水稻干物质积累和产量的影响[J].中国稻米,2015,21(4):88-90,94.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
徐一兰,刘唐兴,付爱斌.不同灌溉方式对双季稻植株生理特性和干物质积累及产量的影响[J].华北农学报,2019,34(5):106-115.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
李强强,赵 玥,李 璠.作物源库关系及其生理调控途径的研究进展[J].江苏农业科学,2020,48(9):50-56.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
曾 翔,李阳生,谢小立,等.不同灌溉模式对杂交水稻生育后期根系生理特性和剑叶光合特性的影响[J].中国水稻科学,2003(4):66-70.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
王 丰,张国平,白 朴.水稻源库关系评价体系研究进展与展望[J].中国水稻科学,2005(6):556-560.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |