
黄土塬区不同土地利用方式土壤水分对降雨的响应研究
赵思远, 贾仰文, 牛存稳, 龚家国, 甘永德
黄土塬区不同土地利用方式土壤水分对降雨的响应研究
Response of Soil Water to Precipitation under Different Land Uses in the Loess Tableland Region
以黄土塬区王东沟小流域塬面为研究对象,结合野外样品采集和室内外化验分析,探究不同土地利用方式下土壤水分、土壤水氢氧稳定同位素对次降雨事件的时空响应变化规律,为黄土塬区农业生产格局优化、生态修复提供科技支撑。结果表明:①在次降雨事件(降雨量47.6 mm)发生前及发生后7天,荒草地、苹果地和玉米地在0~3 m范围内土壤平均含水量分别为16.13%±1.23%、16.01%±1.38%、16.53%±1.43%。土壤水分对本次降雨事件响应的最大深度由大到小依次是玉米地、苹果地和荒草地,前二者存在响应滞后现象。采用有序聚类分析将土壤水分纵向变化层次划分为土壤水分活跃带、弱活跃带、相对稳定带,荒草地各层次深度范围分别为0~0.2、0.2~0.4和0.4~3 m,苹果地和玉米地均为0 ~ 0.2、0.2~0.6和0.6~3 m。②0~3 m土层蓄水能力由大到小依次是荒草地、玉米地和苹果地;③本次降雨事件下,雨水δ2H、δ18O分别为-81.30‰、-11.12‰;降雨后土壤表层的入渗能力大小依次为苹果地>玉米地>荒草地。0~3 m土层范围内土壤水氢氧稳定同位素随深度变化均表现出“多峰”的变化趋势,3种土地利用方式下雨水入渗均呈现“活塞流”和“优先流”交替进行的过程。
The study is carried out on the loess surface of the Wangdonggou sub-basin in the loess tableland region, combining field sample collection and indoor and outdoor laboratory analysis to investigate the spatial and temporal response of soil moisture and soil water-hydrogen-oxygen stable isotopes to secondary rainfall events under different land use patterns, with the aim of identifying the mechanism of soil moisture infiltration and redistribution in the loess tableland region, and providing scientific and technological support for the optimization of agricultural production patterns and ecological restoration in the loess plateau region. The results show that ① before and 7 days after the rainfall event (47.6 mm), the average soil moisture content in the range of 0~3 m is 16.13% ± 1.23%, 16.01% ± 1.38% and 16.53% ± 1.43% in the barren grass, apple and maize fields, respectively. The maximum depth of soil moisture response to this rainfall event is in the order of maize field, apple field and barren grass field, with the first two having a lag in response. Soil moisture is classified into active, weakly active and relatively stable zones by using ordered cluster analysis, with the depth ranges of 0~0.2, 0.2~0.4 and 0.4~3 m in the barren grassland, and 0~0.2, 0.2~0.6 and 0.6~3 m in the apple and maize fields respectively. ③Under this rainfall event, the rainfall δ2H and δ18O are -81.30‰ and -11.12‰ respectively. The infiltration capacity of the soil surface layer after rainfall is in the order of apple field > maize field > maize field; the stable isotopes of soil water hydrogen and oxygen in the 0~3 m soil layer shows alternating processes of “piston flow” and “preferential flow” for rainwater infiltration.
黄土塬区 / 土地利用方式 / 土壤水分 / 稳定同位素 {{custom_keyword}} /
loess tableland region / land use / soil water / stable isotopes {{custom_keyword}} /
图2 荒草地0~3 m剖面土壤水分对次降雨的时空响应变化Fig.2 The temporal and spatial response changes of soil moisture in the 0~3m section of uncultivated grassland to rainfall |
图3 苹果地0~3 m剖面土壤水分对次降雨的时空响应变化Fig.3 The temporal and spatial response changes of soil moisture in the 0~3 m section of apple tree field to rainfall |
表1 有序聚类法划分土壤水分纵向变化层次带结果Tab.1 The result of dividing the soil moisture longitudinal change hierarchical zone by ordered clustering method |
层次带 | 特征值 | 荒草地 | 苹果地 | 玉米地 |
---|---|---|---|---|
活跃带 | 深度/m | 0~0.2 | 0~0.2 | 0~0.2 |
| 21.97 | 12.43 | 13.18 | |
| 0 | 0 | 0 | |
弱活跃带 | 深度/m | 0.2~0.4 | 0.2 ~ 0.6 | 0.2~0.6 |
| 11.04 | 6.59 | 5.64 | |
| 0 | 1.36 | 0.13 | |
相对稳定带 | 深度/m | 0.4~3.0 | 0.6~3.0 | 0.6~3.0 |
| 1.32 | 1.54 | 1.56 | |
| 14.87 | 5.38 | 4.00 |
表2 不同土地利用方式0~3 m土壤水和雨水的氢氧稳定同位素特征 (‰)Tab.2 The characteristics of hydrogen and oxygen stable isotopic of 0~3 m soil water and rainwater in different land use patterns |
水样 | δ2H | δ18O | |||||||
---|---|---|---|---|---|---|---|---|---|
最大值 | 最小值 | 均值 | 标准差 | 最大值 | 最小值 | 均值 | 标准差 | ||
土壤水 | 荒草地 | -14.64 | -95.98 | -63.91 | 13.55 | -2.69 | -13.75 | -8.95 | 1.77 |
苹果地 | -16.36 | -112.32 | -65.60 | 14.60 | -2.13 | -14.91 | -9.13 | 1.88 | |
玉米地 | -17.38 | -113.44 | -67.52 | 13.32 | -1.38 | -15.09 | -9.22 | 1.90 | |
雨水 | - | - | -81.30 | - | - | - | -11.12 | - |
图6 荒草地0~3 m剖面土壤水稳定同位素对次降雨的时空响应变化Fig.6 The temporal and spatial response changes of soil water stable isotopes in the 0~3 m section of uncultivated grassland to rainfall |
图7 苹果地0~3 m剖面土壤水稳定同位素对次降雨的时空响应变化Fig.7 The temporal and spatial response changes of soil water stable isotopes in the 0~3 m section of apple tree field to rainfall |
1 |
朱显谟. 试论黄土高原的生态环境与“土壤水库”:重塑黄土地的理论依据[J]. 第四纪研究,2000(6):514-520.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
徐庆,左海军. 稳定同位素在流域生态系统水文过程研究中的应用[J]. 世界林业研究,2020,33(1):8-13.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
王仕琴,宋献方,肖国强,等. 基于氢氧同位素的华北平原降水入渗过程[J]. 水科学进展,2009,20(4):495-501.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
靳宇蓉,鲁克新,李鹏,等. 基于稳定同位素的土壤水分运动特征[J]. 土壤学报,2015,52(4):792-801.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
徐学选,张北赢,田均良. 黄土丘陵区降水-土壤水-地下水转化实验研究[J]. 水科学进展,2010,21(1):16-22.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
孙晓旭,陈建生,史公勋,等. 蒸发与降水入渗过程中不同水体氢氧同位素变化规律[J]. 农业工程学报,2012,28(4):100-105.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
柯浩成,李占斌,李鹏,等. 黄土区典型小流域包气带土壤水同位素特征[J]. 水土保持学报,2017, 31(3):298-303.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
马田田,柯浩成,李占斌,等. 次降雨事件下雨养区典型小流域土壤水分运移规律[J]. 水土保持学报,2018,32(2):80-86.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
王欢欢,司炳成,李敏. 黄土塬区深剖面土壤水氢氧同位素分布特征[J]. 灌溉排水学报,2018,37(12):53-59.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
李俊,毕华兴,李笑吟,等. 有序聚类法在土壤水分垂直分层中的应用[J]. 北京林业大学学报,2007,29(1):98-101.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
赵娇娜. 长武塬区不同土地利用类型土壤大孔隙流研究[D]. 北京:中国科学院研究生院(教育部水土保持与生态环境研究中心),2012.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
白盛元,汪有科,马建鹏,等. 黄土高原半干旱区降雨入渗试验研究[J]. 干旱地区农业研究,2016,34(2):218-223.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
鲍彪,毕华兴,云雷,等. 晋西黄土区刺槐林地土壤水分对降雨的响应[J]. 北京林业大学学报,2012,34(2):84-89.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
ALI G,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
刘星,曹红霞,廖阳,等. 滴灌模式对黄土高原苹果树生长、产量及根系分布的影响[J]. 干旱地区农业研究,2020,38(4):57-66.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
宁婷,郭忠升. 半干旱黄土丘陵区撂荒坡地土壤水分循环特征[J]. 生态学报,2015,35(15):5 168-5 174.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
程立平,刘文兆,李志. 黄土塬区不同土地利用方式下深层土壤水分变化特征[J]. 生态学报,2014,34(8):1 975-1 983.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
胡海英,谢雨钊,刘琳. 珠江泗河水流域降水事件中氢氧同位素特征分析[J]. 中国农村水利水电,2020(9):95-99.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
陈曦,李志,程立平,等. 黄土塬区大气降水的氢氧稳定同位素特征及水汽来源[J]. 生态学报,2016, 36(1):98-106.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
王锐,刘文兆,宋献方. 黄土塬区土壤水分运动的氢氧稳定同位素特征研究[J]. 水土保持学报,2014,28(3):134-137.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
林国伟,李志,李晨曦,等. 黄土高原白草塬土壤水分特征及对土地利用变化的响应[J]. 水土保持通报,2017,37(2):32-38.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |