
基于可破碎离散元法的堆石料应力变形及剪胀特性缩尺效应研究
徐琨, 杨启贵, 周伟, 马刚, 黄泉水
基于可破碎离散元法的堆石料应力变形及剪胀特性缩尺效应研究
Research on the Scaling Effect of the Stress Deformation Feature and the Dilatancy Characteristics of Rockfill Material Based on the Crushable DEM
缩尺效应对堆石料应力变形及剪胀特性有显著的影响,当前对其缩尺规律已有诸多认识,但缩尺机理仍不清晰。为进一步揭示堆石料缩尺效应产生机理,基于可破碎离散元法,通过开展不同尺寸试样的数值三轴剪切试验,探讨堆石料力学变形缩尺规律,并从宏、细观层面深入分析试样剪胀特性的缩尺规律,揭示其产生的细观机理。研究表明:试样尺寸越大,抗剪强度越低,剪缩性越强,且试验围压越高,这一现象越显著;采用相似级配法缩尺得到的不同尺寸试样初始承力结构相似,但尺寸越大的试样其承力结构越稀疏;试样尺寸越大,各粒径组有效配位数分布的降低程度减弱,且围压越大时越明显;各粒径组有效配位数分布的演化与试样颗粒破碎率成正相关,试样颗粒破碎率越大,各粒径组有效配位数分布上抬越多;不同尺寸试样间各粒径组有效配位数分布差演化的差异是试样剪胀特性缩尺规律产生的细观机理之一。
The scaling effect has significant influences on the stress deformation feature and dilatancy characteristics of rockfill materials. Many understandings on the scaling law have been detected, while the underlying mechanism is still unclear. In order to further reveal the mechanism of scaling effect of rockfill material, the numerical triaxial tests of rockfill materials with different sizes are carried out based on the crushable discrete element method (DEM). The results show that the larger the sample size is, the lower the shear strength is and the stronger the shear shrinkage is, and this phenomenon is more significant with increasing confining pressure. The initial load-bearing structures of the specimens generated by similar grading method are similar, while the load-bearing structures will become thinner with increasing sample size. In addition, the reduction of the effective coordination number distribution of each particle size group decreases with an increasing sample size, and this phenomenon becomes more obvious with larger confining pressure. The evolution of the effective coordination number distribution of each particle size group is positively correlated with the particle breakage rate. The higher the particle breakage rate is, the higher the effective coordination number distribution of each particle size group is. It is found that the differences in the evolution of effective coordination number distribution difference among different size groups of rockfill specimens is one of the meso-mechanism of the scaling law of dilatancy characteristics.
堆石料 / 缩尺效应 / 应力变形 / 剪胀特性 / 各粒径组有效配位数分布 {{custom_keyword}} /
rockfill material / scaling effect / stress deformation feature / dilatancy characteristics / effective coordination number distribution of each particle size group {{custom_keyword}} /
表1 离散元模拟参数Tab.1 Input parameters for DEM simulation |
颗粒参数 | 密度/(kg·m-3) | 2 650 |
---|---|---|
摩擦系数/m | 0.500 | |
接触模型 | Hertz-Mindlin | |
剪切模量G/GPa | 28.000 | |
泊松比 | 0.150 | |
颗粒破碎准则参数 | 特征粒径d 0/mm | 28.000 |
特征破碎强度s 0/MPa | 14.000 | |
韦伯模量m | 2.650 |
图12 试样各粒径组有效配位数分布(颗粒不破碎)Fig.12 Effective coordination number distribution of each particle size group (uncrushable particle) |
1 |
郦能惠. 高混凝土面板堆石坝新技术[M]. 北京: 中国水利水电出版社, 2007.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
李翀,何昌荣,王琛,等.粗粒料大型三轴试验的尺寸效应研究[J].岩土力学, 2008,29():563-566.
增刊1
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
凌华,殷宗泽,朱俊高,等. 堆石料强度的缩尺效应试验研究[J]. 河海大学学报: 自然科学版, 2011,39(5):540-544.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
马刚,周伟,常晓林,等. 堆石料缩尺效应的细观机制研究[J]. 岩石力学与工程学报, 2012, 31(12):2 473-2 482.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
朱俊高,刘忠,翁厚洋,等. 试样尺寸对粗粒土强度及变形试验影响研究[J]. 四川大学学报(工程科学版), 2012,44(6):92-96.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
武利强,朱晟,章晓桦,等. 粗粒料试验缩尺效应的分析研究[J]. 岩土力学, 2016,37(8):2 187-2 197.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
徐琨,周伟,马刚.颗粒破碎对堆石料填充特性缩尺效应的影响研究[J].岩土工程学报,2020,42(6):1 013-1 022.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
郦能惠,朱铁,米占宽. 小浪底坝过渡料的强度与变形特性及缩尺效应[J]. 水电能源科学, 2001,19(2):39-42.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
李凤鸣, 卞富宗. 两种粗粒土的比较试验[J]. 勘察科学技术, 1991(2):25-29.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
王继庄. 粗粒料的变形特性和缩尺效应[J]. 岩土工程学报, 1994,16(4):89-95.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
褚福永,朱俊高,翁厚洋,叶洋帆.堆石料强度及变形特性缩尺效应试验[J].河海大学学报(自然科学版),2019,47(4):381-386.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
武利强,叶飞,林万青.堆石料力学特性缩尺效应试验研究[J].岩土工程学报,2020,42():141-145.
增刊2
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
花俊杰, 周伟, 常晓林,等. 堆石体应力变形的尺寸效应研究[J]. 岩石力学与工程学报, 2010,29(2):328-335.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
王永明,朱晟,任金明,等. 筑坝粗粒料力学特性的缩尺效应研究[J]. 岩土力学, 2013,34(6):1 799-1 806.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
孔宪京,宁凡伟,刘京茂,等.基于超大型三轴仪的堆石料缩尺效应研究[J].岩土工程学报,2019,41(2):255-261.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
朱俊高, 翁厚洋, 吴晓铭, 等. 粗粒料级配缩尺后压实密度试验研究[J]. 岩土力学, 2010, 31(8): 2394–2398.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
Itasca Consulting Group Inc. Particle Flow Code in 3 Dimensions (PFC3D) version 5.0[M]. Minneapolis: Itasca Consulting Inc, 2014:2 199-2 216.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
徐琨,周伟,马刚,等.基于离散元法的颗粒破碎模拟研究进展[J].岩土工程学报,2018,40(5):880-889.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
朱晟,王永明,翁厚洋. 粗粒筑坝材料密实度的缩尺效应研究[J]. 岩石力学与工程学报, 2011,30(2):348-357.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
张钰燕. 颗粒材料剪胀性的离散元分析[D].大连:大连理工大学,2012.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
李广信. 高等土力学[M]. 北京:清华大学出版社, 2004.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
40 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |