
深水短洞泄水底孔突变水流特性及对策研究
宋莉萱, 武彩萍, 朱超, 杨祎祎
深水短洞泄水底孔突变水流特性及对策研究
Research on the Characteristics and Countermeasures of Sudden Change Flow in Bottom Hole of Deep Water Short Hole
较多高坝的泄水底孔采用深水短洞有压进水口型式,选用偏心铰弧门及相应的突扩突跌衔接布置,突扩跌坎体型突变,水流条件复杂,其水力特性是影响底孔安全运行的重要因素。本文结合Souapiti水电站泄流底孔单体模型试验,对短洞有压进口底孔突扩突跌水力学特性及对策进行了较全面研究。得出了底孔流量系数在0.88~0.9范围内、突扩跌坎射流冲击底板处水流脉动最强,最大脉动压力最大可以达到水流冲击力的1.4倍,该体型底孔跌坎尺寸由1 m增加至1.2 m,通气孔面积增大25%后,泄水道水流掺气浓度明显增大,最小掺气浓度大于规范规定的3%等结论,该成果可对类似工程的掺气减蚀以及设计施工有一定的参考意义。
The bottom outlets of many high dams adopt deep-water short-hole pressurized inlet type, choose eccentric hinge arc door and corresponding sudden expansion and sudden fall articulation arrangement. As sudden expansion and fall can abrupt change in body shape, complex water flow conditions, its hydraulic characteristics are important factors affecting the safe operation of the bottom hole. It is concluded that the bottom hole flow coefficient is in the range of 0.88~0.9, the water pulsation is strongest at the bottom plate of the sudden expansion and drop jet impact, the maximum pulsation pressure can reach 1.4 times of the water impact force, the size of the bottom hole of this body type increases from 1m to 1.2 m, the ventilation hole area increases by 25%, the concentration of gas doping in the water flow of the drainage channel is obviously increases, and the minimum gas doping concentration is more than 3% as specified in specification. The results can have some reference significance for the gas doping and corrosion reduction of similar projects as well as design and construction.
深水短洞 / 突变水流 / 突扩突跌 / 掺气减蚀 {{custom_keyword}} /
deepwater short holes / catastrophe flow / abrupt enlarging and falling / aeration cavitation-alleviation {{custom_keyword}} /
表1 泄洪底孔泄流能力试验数据Tab.1 Experimental data of discharge capacity of spillway bottom hole |
库水位/m | 短压力进口方案流量/(m3·s-1) | 流量系数 | 原设计方案流量/(m3·s-1) | 流量偏差/±% |
---|---|---|---|---|
210.00 | 1 012 | 0.886 | 1 000 | 1.2 |
213.11 | 1 034 | 0.887 | 1 021 | 1.3 |
213.56 | 1 039 | 0.888 | 1 024 | 1.5 |
图2 泄洪底孔侧边时均动水压力测点位置(单位:m)Fig.2 Location of time-averaged hydrodynamic pressure measuring point on the side of spillway bottom hole |
1 |
王京,孙双科,汪星,等. 某重力坝工程泄洪排沙底孔的运行方式研究[J].中国水利水电科学研究院学报,2020(6):455-461 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
龚洁. 溢洪道泄洪消能试验和数值模拟研究[D].济南:山东大学, 2011.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
张丰双,王海涛. 浅谈水库的除险加固[J]. 河南科技. 2014(8): 181.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
朱中石. 洄峰涧水库泄水建筑物水流数值模拟研究[D].济南:山东大学,2012.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
李炜.水力计算手册[M]. 2版.北京:中国水利水电出版社,2006.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
周赤,韩继斌,朱世洪,等. 三峡工程泄洪深孔跌坎掺气体型模型试验研究[J]. 长江科学院院报,2000(5):5-8 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
王世夏. 水工设计的理论和方法[M]. 北京:中国水利水电出版社,2000.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
夏毓常.深孔、底孔及泄洪洞短进水口免蚀水力计算[J].人民长江,1981(2):37-43.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
王俊勇.明流泄水洞短进水口水力特性的研究[J]. 水利水运科学研究,1982(2):93-99.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
许文海,卢泰山,南晓红,等 : 九甸峡泄洪洞突扩跌坎体型的水力学试验[J].西北农林科技大学学报(自然科学版),2006(11):217-221.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
黄继汤.空化与空蚀的原理及应用[M].北京:清华人学出版社.1991.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
王才欢,侯冬梅,李利,等. 高水头弧形闸门突扩跌坎及掺气设施体型研究与工程实践[J]. 水力发电学报,2012(5):107-113.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
陈端,黄国兵,段文刚,等.水布垭枢纽放空洞工作闸门区突扩跌坎体型的试验研究[M]// 水力学与水利信息学进展. 成都:四川大学出版社, 2005.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |