
基于多种平滑算法的三峡水库反推入库流量消噪
金铮, 张行南, 夏达忠, 舒卫民, 黄钰凯
基于多种平滑算法的三峡水库反推入库流量消噪
Denoising on Reverse Deduction Inflow of Three Gorges Reservoir Based on Various Smoothing Algorithms
三峡水库的反推入库流量存在严重的“锯齿”问题,影响了实际的水库实时调度相关工作,利用数据平滑算法可有效对其误差进行后处理。通过对比各平滑算法分别选取五点三次平滑算法及离散小波阈值消噪算法进行研究,并与实际工作中常用的三点平滑算法进行对比,通过构建水文要素指标和平滑度指标评价平滑效果。结果表明:在综合适用条件最好的Db小波与Sym小波中,Db7小波阈值消噪的平滑效果优于其他小波;相比于三点平滑法和五点三次平滑法,Db7小波阈值消噪法能较全的保留原序列的洪峰、洪量和峰现时间,并消除了原入库流量更多的锯齿。研究表明,利用离散小波阈值消噪法对三峡水库的反推入库流量的噪声平滑可具有推广价值。
There is a serious “sawtooth” problem in the backward inflow flow of the Three Gorges Reservoir, which affects the real-time operation of the reservoir. The data smoothing algorithm can be used to handle the error effectively. In this paper, the five-point cubic smoothing algorithm and the discrete wavelet threshold denoising algorithm are selected to study by comparing the smoothing algorithms, and compared with the three-point smoothing algorithm commonly used in practical work. The smoothing effect is evaluated by constructing the hydrological element index and smoothness index. The results show that the smoothing effect of Db7 wavelet threshold denoising is better than other wavelets in the best comprehensive application conditions of Db wavelet and Sym wavelet. Compared with the three-point smoothing method and the five-point cubic smoothing method, the Db7 wavelet threshold denoising method can fully retain the flood peak, flood volume and peak occurrence time of the original sequence, and eliminate more sawteeth of the original inflow flow.The study shows that the method of discrete wavelet threshold denoising can be used to smooth the noise of the backthrust inflow of the Three Gorges Reservoir.
三峡水库 / 入库流量 / 离散小波阈值去噪算法 / 五点三次平滑算法 / Stein无偏风险估计阈值法 {{custom_keyword}} /
Three Georges Reservoir / inflow / discrete wavelet threshold denoising / five-point cubic smoothing / Stein unbiased risk estimation threshold method {{custom_keyword}} /
表1 2019年入库流量时段划分Tab.1 Division of the inflow in 2019 |
划分时段 | 起止时间 |
---|---|
消落期 | 1月1日-5月31日 |
主汛期 | 6月1日-8月31日 |
蓄水期 | 9月1日-12月31日 |
表2 Sym小波和Db小波对全年过程的消噪结果Tab.2 The denoising results of the whole year process by Sym wavelet and Db wavelet |
小波种类 | 洪峰绝对误差/(m3·s-1) | 洪峰相对误差/% | 峰现时间相对误差/时段 | 洪量相对误差/% | 平滑度 | ||
---|---|---|---|---|---|---|---|
SymN 小波 | Sym5 | -137 | -0.294 | 0 | 0.001 | 0.56 | |
Sym6 | -131 | -0.282 | 0 | -0.001 | 0.38 | ||
Sym7 | -963 | -2.074 | 0 | 0.001 | 0.65 | ||
Sym8 | 113 | 0.243 | 0 | -0.003 | 0.35 | ||
DbN 小波 | Db5 | -1 015 | -2.185 | 0 | 0.002 | 0.72 | |
Db6 | 154 | 0.331 | 0 | -0.001 | 0.34 | ||
Db7 | -422 | -0.909 | 0 | 0.001 | 0.75 | ||
Db8 | -28 | -0.060 | 0 | -0.005 | 0.39 | ||
Db9 | -517 | -1.113 | 0 | 0.001 | 0.48 | ||
Db10 | -5 | -0.010 | 0 | 0 | 0.45 |
表3 3种平滑方法对全年序列的处理结果Tab.3 The processing results of three smoothing methods for the whole year sequence |
平滑方法 | 洪峰绝对误差/(m3·s-1) | 洪峰相对误差/% | 峰现时间相对误差/时段 | 洪量相对误差/% | 平滑度 |
---|---|---|---|---|---|
三点平滑法 | -1038 | -2.234 | 0 | -0.002 | 0.74 |
五点三次平滑法 | -662 | -1.43 | 1 | 0.001 | 0.79 |
Db7小波阈值消噪法 | -422 | -0.282 | 0 | -0.001 | 0.75 |
表4 3种方法对消落期、主汛期及蓄水期的处理结果Tab.4 The results of fluctuation period, main flood season and water storage period by three methods |
平滑时段 | 平滑方法 | 洪量误差/% | 平滑度 |
---|---|---|---|
消落期 | 三点平滑法 | -0.003 | 0.74 |
五点三次平滑法 | 0.003 | 0.77 | |
Db7小波阈值消噪法 | -0.001 | 0.78 | |
主汛期 | 三点平滑法 | 0 | 0.62 |
五点三次平滑法 | -0.001 | 0.72 | |
Db7小波阈值消噪法 | 0 | 0.68 | |
蓄水期 | 三点平滑法 | -0.004 | 0.71 |
五点三次平滑法 | 0.002 | 0.75 | |
Db7小波阈值消噪法 | -0.001 | 0.79 |
1 |
秦昊,陈瑜彬.长江洪水预报调度系统建设及应用[J].人民长江,2017,48(4):16-21.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
周斌.基于水量平衡方程的水库调洪演算基础数据误差传播规律研究[J].人民珠江,2019,40(1):80-85.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
严波涛.数据平滑的理论基础和方法[J].西安体育学院学报,1994(4):20-25,91.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
王钦钦.飞行器遥测数据解析与函数构造方法研究[D].西安:西安工业大学,2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
武炜,陈标,吴剑锋,等.基于五点三次平滑算法的入库流量反推研究[J].水利水电技术,2013,44(12):100-102.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
李凯凯.张峰水库入库流量推算方法与应用研究[J].山西水土保持科技,2021(2):38-40,48.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
桑燕芳.水文序列小波分析与预报方法的研究及应用[D].南京:南京大学,2011.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
王鹤.小波方法在水文时间序列分析若干问题中的应用[D].长春:吉林大学,2009.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
王秀杰,费守明.小波分析方法在水文径流模拟中的应用[J].水电能源科学,2007,25(6):1-3.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
王慧琴.小波分析与应用[M].北京:北京邮电大学出版社,2011.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
李匡,柳俊,张子平,等.基于自适应权重的滑动平均入库流量修正方法[J].中国防汛抗旱,2020:1-5.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
谭章禄,袁慧.时间序列预处理与信息噪声之间的关系研究:基于离散小波变换和ARIMA模型[J].数学的实践与认识,2020,50(15):30-42.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
兰秋军.金融时间序列隐含模式挖掘方法及其应用研究[D].长沙:湖南大学,2005.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |