
黄河流域降水时空演变规律研究
张金萍, 张航
黄河流域降水时空演变规律研究
Spatio-temporal Variation Characteristics of Precipitation in the Yellow River Basin
为探究黄河流域水资源演变特征,运用信息熵、CEEMDAN、Copula理论对黄河流域1960-2017年的降水时空演变规律进行了相关研究。结果表明:①过去50年间,黄河流域降水整体呈现出一种下降趋势,但源区降水在缓慢增加;②2002年以后,黄河流域降水时空信息熵减小,降水复杂性减弱;③CEEMDAN分解结果表明对黄河流域降水的观测和研究应主要集中在2~4年的短周期上,RES余量则反映了降水序列整体下降但近几年逐渐恢复的趋势;④通过 Gumbel-Copula函数发现不同阶段黄河流域年、汛期降水联合分布以丰枯同频为主,且突变后同步概率增加。本研究从时间和空间维度对黄河流域不同阶段降水规律进行了研究,有助于进一步认识和把握黄河流域水循环特征,进而为黄河流域生态保护和高质量发展提供支撑。
To explore the characteristics of the evolution of water resources in the Yellow River Basin, information entropy, CEEMDAN, and Copula theories are used to study the temporal and spatial evolution of precipitation in the Yellow River Basin from 1960 to 2017. It is found that, ① In the past 50 years, the precipitation in the Yellow River Basin as a whole has shown a downward trend, but the precipitation in the source area is increasing slowly; ②After 2002, the Spatiotemporal information entropy of precipitation in the Yellow River Basin declined and complexity decreased. ③CEEMDAN decomposition results show that the observation and research on precipitation in the Yellow River Basin should be mainly focused on the short cycle of 2~4 years, RES balance reflects the overall decline of precipitation sequence but gradually recovered in recent years; ④Through the Gumbel-Copula function, it is found that the combined distribution of annual and flood season precipitation in the Yellow River Basin at different stages is mainly abundant and dry, and the probability of synchronization increases after the mutation. This paper studies the spatiotemporal characteristics of precipitation in the Yellow River Basin at different stages, which helps to further understand and grasp the characteristics of the water circulation in the Yellow River Basin, and then provide support for the ecological protection and high-quality development of the Yellow River Basin.
黄河流域 / 降水 / 信息熵 / 多时间尺度 / Copula {{custom_keyword}} /
Yellow River Basin / precipitation / information entropy / multi-time scale / Copula {{custom_keyword}} /
表1 常用Archimedean Copula函数Tab.1 Three commonly used Archimedean Copula functions |
Copula | 函数形式 | θ与τ关系 |
---|---|---|
Gumbel Copula | | |
Clayton Copula | | |
Frank Copula | | |
表2 年降水序列突变前后时间信息熵Tab.2 Temporal information entropy value of annual rainfall in different stages |
区域 | 突变前 | 突变后 | 变化幅度/% |
---|---|---|---|
黄河流域 | 5.819 9 | 5.479 2 | -5.85 |
龙上 | 5.397 3 | 5.180 9 | -4.01 |
龙-兰 | 5.687 1 | 5.104 7 | -10.24 |
兰-河 | 5.338 1 | 4.941 7 | -7.43 |
内流区 | 5.709 2 | 5.295 7 | -7.24 |
河-龙 | 5.932 4 | 5.558 0 | -6.31 |
龙-三 | 5.951 7 | 5.637 0 | -5.29 |
三-花 | 6.057 7 | 5.868 4 | -3.12 |
花下 | 6.234 0 | 6.079 7 | -2.48 |
表3 汛期降水突变前后时间信息熵Tab.3 Temporal information entropy value of flood season rainfall in different stages |
区域 | 突变前 | 突变后 | 变化幅度/% |
---|---|---|---|
黄河流域 | 5.639 9 | 5.368 8 | -4.81 |
龙上 | 5.203 1 | 5.033 2 | -3.27 |
龙-兰 | 5.392 9 | 4.941 2 | -8.38 |
兰-河 | 5.203 3 | 4.654 3 | -10.55 |
内流区 | 5.578 1 | 4.951 9 | -11.23 |
河-龙 | 5.813 9 | 5.320 6 | -8.48 |
龙-三 | 5.752 8 | 5.610 4 | -2.48 |
三-花 | 5.833 3 | 5.814 4 | -0.32 |
花下 | 6.008 8 | 5.927 4 | -1.35 |
表4 年降水序列多时间尺度分解结果Tab.4 Multi-time scale decomposition results of annual rainfall series |
IMF分量 | 准周期/a | 最小振幅/mm | 最大振幅/mm | 平均振幅/mm | |
---|---|---|---|---|---|
突变前 | IMF1 | 2~3 | 4.4 | 155.8 | 43.9 |
IMF2 | 5~6 | 0.6 | 46.5 | 18.6 | |
IMF3 | 13 | 0.1 | 25.3 | 8.6 | |
IMF4 | 20 | 0.4 | 10.9 | 6.9 | |
突变后 | IMF1 | 2~3 | 1.4 | 102.6 | 31.4 |
IMF2 | 4 | 2.8 | 28.7 | 9.6 | |
IMF3 | 9 | 1.9 | 19.0 | 9.9 |
表5 黄河流域年降水序列突变前后多时间尺度熵Tab.5 Multi-time scale entropy of rainfall in different stages |
流域 | 突变前 | 突变后 | |||||||
---|---|---|---|---|---|---|---|---|---|
IMF1 | IMF2 | IMF3 | IMF4 | RES | IMF1 | IMF2 | IMF3 | RES | |
黄河流域 | 5.472 | 4.427 | 3.713 | 2.960 | 4.066 | 5.118 | 3.847 | 3.574 | 3.120 |
龙上 | 5.166 | 4.254 | 3.662 | 2.642 | 2.589 | 4.762 | 3.988 | - | 3.622 |
龙-兰 | 5.456 | 4.214 | 3.166 | 3.209 | 3.211 | 4.605 | 3.487 | 2.359 | 1.548 |
兰-河 | 5.174 | 4.043 | 3.654 | 2.038 | 2.455 | 4.598 | 3.142 | 3.411 | 2.702 |
内流区 | 5.582 | 4.290 | 3.972 | - | 3.602 | 4.932 | 3.620 | 3.125 | 3.856 |
河-龙 | 5.738 | 4.592 | 3.930 | - | 4.124 | 5.220 | 3.884 | 3.057 | 3.928 |
龙-三 | 5.589 | 4.839 | 4.253 | 2.811 | 4.463 | 5.342 | 4.225 | 4.189 | 3.054 |
三-花 | 5.757 | 4.989 | 3.948 | 3.607 | 4.241 | 5.626 | 4.829 | 3.577 | 4.169 |
花下 | 5.976 | 5.363 | 4.597 | 3.890 | 4.504 | 5.805 | 4.698 | 3.543 | 4.109 |
表6 突变前拟合优度检验结果Tab.6 Goodness of fit test results before mutation |
类型 | Gumbel-Copula | Clayton-Copula | Frank-Copula |
---|---|---|---|
AIC | -261.23 | -237.05 | -248.37 |
OLS | 0.043 6 | 0.058 1 | 0.050 8 |
表7 突变前年-汛期降水联合概率Tab.7 Joint probability of annual and flood season precipitation before mutation |
汛期 | 丰(P<37.5%) | 平(37.5%≤P≤62.5%) | 枯(P>62.5%) |
---|---|---|---|
丰(P<37.5%) | 0.297 | 0.062 | 0.033 |
平(37.5%≤P≤62.5%) | 0.067 | 0.086 | 0.108 |
枯(P>62.5%) | 0.023 | 0.052 | 0.272 |
表8 突变后年-汛期联合降水概率Tab.8 Joint probability of annual and flood season precipitation after mutation |
汛期 | 丰(P<37.5%) | 平(37.5%≤P≤62.5%) | 枯(P>62.5%) |
---|---|---|---|
丰(P<37.5%) | 0.326 | 0.083 | 0.007 |
平(37.5%≤P≤62.5%) | 0.058 | 0.130 | 0.122 |
枯(P>62.5%) | 0.001 | 0.007 | 0.266 |
1 |
郜国明,田世民,曹永涛,等.黄河流域生态保护问题与对策探讨[J].人民黄河,2020,42(9):112-116.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
胡春宏,张晓明.黄土高原水土流失治理与黄河水沙变化[J].水利水电技术,2020,51(1):1-11.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
韩会庆,李建鸿,白玉梅,等.贵州省主要粮食作物不同生长期的降水集中度时空演变[J].节水灌溉,2020(1):66-72.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
陈云,郭霖,叶长青,等.珠江流域旱涝时空演变规律分析[J].中国农村水利水电,2018(2):113-120,125.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
秦国帅,刘建卫,许士国,等.太子河流域降水及旱涝时空演变特征分析[J].中国农村水利水电,2019(8):76-82.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
杨特群,饶素秋,陈冬伶.1951年以来黄河流域气温和降水变化特点分析[J].人民黄河,2009,31(10):76-77.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
王雁,丁永建,叶柏生,等.黄河与长江流域水资源变化原因[J].中国科学:地球科学,2013,43(7):1 207-1 219.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
王国庆,张建云,贺瑞敏,等.黄河兰州上游地区降水、气温变化及趋势诊断[J].干旱区资源与环境,2009,23(1):77-81.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
何金梅,李照荣,闫昕旸,等.黄河兰州上游流域近4a汛期降水变化特征[J].干旱气象,2019,37(6):899-905,943.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
周帅,王义民,畅建霞,等.黄河流域干旱时空演变的空间格局研究[J].水利学报,2019,50(10):1 231-1 241.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
陈磊,王义民,畅建霞,等.黄河流域季节降水变化特征分析[J].人民黄河,2016,38(9):8-12,16.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
黄建平,张国龙,于海鹏,等.黄河流域近40年气候变化的时空特征[J/OL].水利学报:1-11[2020-09-18].
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
邵晓梅,许月卿,严昌荣.黄河流域降水序列变化的小波分析[J].北京大学学报(自然科学版),2006(4):503-509.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
李占杰,鱼京善.黄河流域降水要素的周期特征分析[J].北京师范大学学报(自然科学版),2010,46(3):401-404.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
鱼京善,王国强,刘昌明.基于GIS系统和最大熵谱原理的降水周期分析方法[J].气象科学,2004(3):277-284.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
张继国,吴敏,谢平,等.基于信息熵的降雨信息区域化分析[J].河海大学学报(自然科学版),2013,41(6):477-481.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
张翔,宋晨,吴绍飞.淮河流域降雨时空变异与信息熵分析[J].中国科技论文,2014,9(5):551-554.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
罗赟,董增川,刘玉环,等.基于Copula函数的连河通江湖泊防洪安全设计:以洪泽湖为例[J].湖泊科学,2021,33(3):879-892.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
李军,吴旭树,王兆礼,等.基于新型综合干旱指数的珠江流域未来干旱变化特征研究[J].水利学报,2021,52(4):486-497.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
尹家波,郭生练,王俊,等.基于贝叶斯模式平均方法融合多源数据的水文模拟研究[J].水利学报,2020,51(11):1 335-1 346.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
王飞,王宗敏,杨海波,等.基于SPEI的黄河流域干旱时空格局研究[J].中国科学:地球科学,2018,48(9):1 169-1 183.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
王远见,傅旭东,王光谦.黄河流域降雨时空分布特征[J].清华大学学报(自然科学版),2018,58(11):972-978.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |