
双阻隔结构下缓慢水体二维水动力特性试验研究
蔡君怡, 姜蕊, 龙艺, 潘龙阳, 周宏伟, 王佳美
双阻隔结构下缓慢水体二维水动力特性试验研究
Experimental Research on Two-dimensional Hydrodynamic Characteristics of Slow Water Under Double Bluff Body
以景观湖泊、生态湿地等为主要代表的缓慢水体在城市建设中的重要性日益突出,如何增大水体交换区域,减缓水质恶化趋势,是我们面临的重要问题。基于粒子图像测速技术(PIV),研究了缓慢水体中双阻隔结构(岛屿)间距比、引水流量、形状对二维流场分布、水体置换率、流场平均速度的影响规律。试验结果表明,引水流量是缓慢水体流场强度变化的主控因素,水动力交换效率和水流的平均速度随引水流量的增大而增大;阻隔结构可明显改善流动范围,增加水体流动性。研究发现三棱柱和圆柱联合扰动下的水槽水体流动性最强,水体置换率最高,Q=6.8 L/min,G/D=6时达到最大置换率72.89%。试验结果将对优化景观湖泊内岛屿的布设有一定的借鉴。
Slow water bodies, mainly represented by landscape lakes and ecological wetlands, are becoming more and more important in urban construction. How to increase water exchange areas and slow down the deterioration of water quality is an important problem we are faced with. Based on particle image velocimetry (PIV) technique, the effects of spacing ratio, diversion flow rate and shape of double bluff body (islands) on two-dimensional flow field distribution, water displacement rate and average velocity of the flow field in slow water are studied. The experimental results show that the diversion flow rate is the main controlling factor for the intensity of the flow field in the slow water, and the hydrodynamic exchange efficiency and the average velocity of the water flow are proportional to the diversion flow. The bluff body can obviously improve the range of flow movement and increase the fluidity of water. It is found that the fluidity of the flume water is the strongest and the displacement rate is the highest when the prism and cylinder are disturbed together. The maximum displacement rate reaches 72.89% when Q=6.8 L/min and G/D=6. The experimental results will provide some reference for optimizing the layout of islands in the landscape lake.
缓慢水体 / 阻隔结构 / PIV / 流场分析 / 水动力交换 {{custom_keyword}} /
slow water / bluff body / PIV / flow field analysis / hydrodynamic exchange {{custom_keyword}} /
表1 试验工况设计Tab.1 Test condition design table |
一级结构形状 | 二级结构形状 | θ/(°) | H/cm | Q/(L·min-1) | L/cm | G/D |
---|---|---|---|---|---|---|
三棱柱 | 圆柱 | 45 | 24 | 3.7 | 25 | 1.5/3/4.5/6/7.5 |
33 | 4.5 | 1.5/3/4.5/6/7.5 | ||||
39 | 5.3 | 1.5/3/4.5/6/7.5 | ||||
48 | 6.0 | 1.5/3/4.5/6/7.5 | ||||
58 | 6.8 | 1.5/3/4.5/6/7.5 | ||||
矩形柱 | 圆柱 | 75 | 24 | 3.7 | 25 | 1.5/3/4.5/6/7.5 |
33 | 4.5 | 1.5/3/4.5/6/7.5 | ||||
39 | 5.3 | 1.5/3/4.5/6/7.5 | ||||
48 | 6.0 | 1.5/3/4.5/6/7.5 | ||||
58 | 6.8 | 1.5/3/4.5/6/7.5 |
图4 多级阻隔结构影响下的水体流速矢量分布图(Q=3.7 L/min,三棱柱)Fig.4 Vectorial distribution of water velocity under the influence of multi-barrier structure(Q=3.7 L/min,Triangular cylinder) |
1 |
於孟元,赵忠伟.城市人工湖泊水环境保护研究概述[J].水利水电快报,2020,41(6):25-32.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
王依依,张其成,裘李豪,等.基于流场分析的人工湖设计研究[J].四川环境,2017,36(2):50-56.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
曹坤,马华东.湖泊引调水流量及水体交换优化方案研究:以小南海湖河湖连通工程为例[J].水利科技,2020(4):34-37.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
谭超,黄广灵,黄本胜,等.城市景观湖泊水体交换的数值模拟研究[J].广东水利水电,2016(6):6-11.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
王俊,王轶虹,王强,等.退圩还湖后湖泊水动力条件分析:以蜈蚣湖为例[J].中国农村水利水电,2020(3):91-97.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
徐丹,付湘,谢亨旺,等.间歇式引水冲污对城市湖泊水质改善的研究[J].中国农村水利水电,2019(3):24-27.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
牛晨曦,侯雨坤,耿世洲,等.城市湖泊水动力评价体系研究[J].水利水电技术,2020,51():156-161.
增刊1
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
冯丹. 基于MIKE 21软件对人工湖运行方式的优化分析[D].太原:太原理工大学,2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
陈凯麒,祁昌军,陶洁,等.关于太湖水环境治理的思考[J].环境保护,2016,44(18):20-23.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
匡翠萍,俞露露,顾杰,等.人工岛对金梦海湾水体交换的影响[J].中国环境科学,2019,39(2):757-767.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
李根,廖秋林,沈守云.基于水动力条件的景观水体设计研究:以南宁青秀山蜡烛湖为例[J].湿地科学,2015,13(4):483-490.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
唐继张,周维博,安宝军,等.基于MIKE21的西安昆明池(试验段)换水能力特征研究[J].水资源与水工程学报,2020,31(1):58-63.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
岳青华,丁聪.围填海工程对半封闭海湾水动力环境影响分析:以大鹏湾内围填海工程为例[J].中国农村水利水电,2019(11):129-132,144.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |