
氯化消毒水源回灌过程地下水化学特征研究
陈学群, 刘丹, 张文静, 管清花, 田婵娟, 辛光明
氯化消毒水源回灌过程地下水化学特征研究
Research on the Hydro-chemical Characteristics of the Groundwater Caused by Managed Aquifer Recharge with Chlorinated Water Source
以探究氯化消毒水源回灌过程对地下水水化学特征的影响为目标,以威海市乳山河地下水库为研究区,开展氯化消毒水源回灌试验,分析人工回灌过程中不同阶段地下水环境要素、典型化学组分及金属浓度的变化特征。结果表明:混合作用影响下环境要素及典型化学组分均趋于水源特征,地下水主流方向最大混合比为52.6%;加入NaClO易于发生阳离子交换和方解石溶解作用,Ca2+浓度的增大伴随着HCO3 -浓度的升高,地下水环境氧化性增强使Fe、Mn矿物溶出作用,出现DO浓度增大和pH值低于原生地下水的变化趋势。氯化消毒水源的注入改变地下水中微生物群落,SO4 2-浓度降低是由于其作为电子受体参与降解作用。结果为评价人工回灌过程中水源水质条件对地下水环境安全影响提供科学参考。
To investigate the secondary formation of chloroform under the influence of colloidal effect during managed aquifer recharge, the formation of chloroform under different hydro-chemical conditions with and without colloids is investigated by batch experiments. Besides, the synergistic mode between chloroform and silica colloids is analyzed by tangential flow ultrafiltration technique combined with atomic force electron microscopy(AFM). The results indicate that the formation of chloroform increases with the increase in contact time. High chloride/TOC ratios, high pH, and low ionic strength can promote the formation of chloroform in a specific contact time. The presence of silica colloid would affect the adsorption of the reaction precursor, which inhibits the formation of chloroform at all times and has a strong adsorption effect on the chloroform in water. The results can provide a scientific understanding of the secondary formation of chloroform during artificial recharging.
人工回灌 / 回灌水源 / 氯化消毒 / 水化学特征 / 野外试验 {{custom_keyword}} /
managed aquifer recharge / source of recharge water / chlorination / hydro-chemical characteristics / field test {{custom_keyword}} /
表1 含水介质的主要理化性质Tab.1 The main physical and chemical properties of media |
介质类型 | D 50/mm | 含水率/% | 比表面积/(m2·g-1) | pH | 有机质含量/% |
---|---|---|---|---|---|
细砂 | 0.21 | 15.50 | 1.19 | 34.83 | 52.07 |
中砂 | 0.26 | 5.80 | 6.22 | 42.71 | 33.24 |
表2 试验场地各水体环境要素特征Tab.2 Characteristics of water environment elements in the test site |
指标 | pH | 电导率/(μS∙cm-1) | TDS/(mg·L-1) | DO/(mg·L-1) | Eh/mV |
---|---|---|---|---|---|
河水 | 7.54 | 486.29 | 324 | 4.2 | -87.5 |
回灌水源 | 8.45 | 1 180.24 | 447 | 8.5 | -23.9 |
地下水 | 7.79 | 646.20 | 380 | 3.1 | -122.5 |
表3 试验场地各水体水化学指标Tab.3 The hydrochemical indexes in the test site |
指标 | 河水/(mg·L-1) | 回灌水源/(mg·L-1) | 原始地下水/(mg·L-1) |
---|---|---|---|
K+ | 6.56 | 6.77 | 1.93 |
Na+ | 60.00 | 131.58 | 125.00 |
Ca2+ | 49.04 | 44.75 | 21.30 |
Mg2+ | 22.67 | 14.00 | 8.11 |
Cl- | 111.38 | 217.97 | 92.22 |
SO4 2- | 105.01 | 114.80 | 88.69 |
CO3 2- | 0 | 8.09 | 0 |
HCO3 - | 129.77 | 107.98 | 152.53 |
NO3 - | 1.86 | 1.30 | 16.42 |
表4 地下水中各离子净增量计算结果 (mg/L)Tab.4 The net increment of each ion in groundwater |
阳离子 | 中 | 后 | 阴离子 | 中 | 后 | ||
---|---|---|---|---|---|---|---|
K+ | 测试值 | 3.18 | 2.27 | 测试值 | 94.67 | 78.35 | |
计算值 | 3.96 | 2.03 | SO4 2- | 计算值 | 99.66 | 89.21 | |
Net | -0.78 | 0.24 | Net | -4.99 | -10.86 | ||
Na+ | 测试值 | 189.4 | 151.52 | 测试值 | 0 | 0 | |
计算值 | 127.76 | 125.13 | CO3 2- | 计算值 | 3.39 | 0.16 | |
Net | 61.64 | 26.39 | Net | -3.40 | -0.16 | ||
Ca2+ | 测试值 | 42.77 | 24.52 | 测试值 | 145.27 | 193.69 | |
计算值 | 31.15 | 21.77 | HCO3 - | 计算值 | 133.82 | 151.64 | |
Net | 11.62 | 2.75 | Net | 11.45 | 42.05 | ||
Mg2+ | 测试值 | 13.22 | 8.33 | 测试值 | 11.96 | 16.73 | |
计算值 | 10.58 | 8.22 | NO3 - | 计算值 | 10.07 | 16.11 | |
Net | 2.64 | 0.11 | Net | 1.89 | -8.12 |
1 |
高淑琴,苏小四,杜新强,等. 大庆市西部地下水库人工回灌方案研究[J]. 灌溉排水学报, 2007(4):68-71.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
吴建中,王寒梅,杨天亮. 浅层地下水人工回灌应用于上海市工程性地面沉降防治的试验研究[J]. 现代地质, 2009,23(6):1 194-1 200.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
朱恒华,孙静,林奇云,等.人工回灌条件下滨海砂质含水层渗透性的时空演变特征[J]. 地质学报, 2019,93():79-86.
增刊1
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
毕钦祥,马安堂,唐克旺,等. 潍北平原咸水入侵治理方案及地下水双控指标研究[J]. 中国水利, 2020(11):16-17.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
刘泽. 地下水人工补给研究进展[J]. 科技经济导刊, 2020,28(9):39-40.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
王文,杨云. 地下水人工补给模式及补给量计算方法研究[J]. 安徽农业科学, 2014,42(32):11 479-11 482.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
李贺强,邢国平,王超. 雨水回灌对深层承压含水层水质影响的模拟研究[J]. 水土保持通报, 2015,35(1):139-142.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
郑凡东,刘立才,杨牧骑, 等. 南水北调水源北京西郊回灌的水岩相互作用模拟[J]. 水文地质工程地质, 2012,39(6):22-28.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
林学钰,张文静,何海洋,等. 人工回灌对地下水水质影响的室内模拟实验[J]. 吉林大学学报(地球科学版), 2012,42(5):1 404-1 409,1 433.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
杜新强,路莹,冶雪艳,等. 地下水人工回灌过程中介质堵塞与水质变化研究进展[J]. 黑龙江大学工程学报, 2018,9(2):2,5-10.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
杜新强,廖资生,李砚阁. 含水层储存和回采技术的研究与应用[J]. 中国给水排水, 2004(8):24-26.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
冯帆,姜永海,廉新颖,等. 地下水回补引发含水层氟释放次生风险的模拟研究[J]. 环境科学研究, 2020,33(6):1 440-1 450.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
杜新强,齐素文,廖资生,等. 人工补给对含水层水质的影响[J]. 吉林大学学报(地), 2007(2):293-297.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
何海洋,张文静,谷小溪.氯苯在人工回灌过程中的迁移规律研究[J].节水灌溉, 2012(11):30-33,37.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
桓颖,张文静,杜尚海. 基于野外试验的上海市地下水人工回灌可行性分析[J].科学技术与工程, 2015,15(14):126-131.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
朱锦旗,王彩会,陆徐荣,等. 苏锡常地区浅层地下水铁锰离子分布规律及成因分析[J].水文地质工程地质, 2006(3):30-33,37.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
雷万荣,唐春梅,江凌云. 浅谈地下水中铁、锰质的迁移与富集规律[J].江西科学, 2006(1):80-82.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |