
基于指标体系的农田涝灾风险评估与对策分析
张伟, 罗文兵, 李亚龙, 范琳琳, 何军, 邹志科
基于指标体系的农田涝灾风险评估与对策分析
An Analysis of the Farmland Waterlogging Risk Assessment and Countermeasures Based on the Index System
涝灾一直是困扰人类社会发展的自然灾害,因涝造成的作物减产已威胁到粮食安全。关于涝灾指标、风险等级、风险评价的研究一直是涝灾研究的热点之一,具有重要的理论意义和实际意义。以四湖流域螺山排区为研究区,建立了涝灾指标体系,采用AHP和CRITIC法进行权重赋值,构建了涝灾风险评估模型,利用构建的模型分析了不同减灾措施下的风险程度。结果表明:在提高排涝能力至规划水平、提高滞涝水面率以及提高水旱比的方案下,研究区涝灾综合风险度最低,与现状情况相比,在遭遇5、10、20 a一遇的汛期降雨强度年型时,高风险面积占比分别降低100%、78.05%、54.44%,遭遇3 a一遇的汛期降雨强度年型时,低风险面积占比降低72.96%。
Waterlogging has always been a natural disaster that troubles the development of human society. The crop reduction caused by waterlogging has threatened food security. The research on risk index, risk level and risk evaluation of waterlogging has been one of the hot topics, which has important theoretical and practical significance. In this paper, the Luoshan Drainage Area in Four-lake Watershed is chosen as the study area. The waterlogging disaster index system is established, and the index weights are calculated by using the AHP and CRITIC method. Then the waterlogging risk assessment model is established, and the risk degree under different mitigation measures is analyzed. The results show that by improving the drainage capacity to the planning level, increasing the water level, and improving the water-drought ratio at the same time, the comprehensive waterlogging risk decreases the most in the study area. Compared with the current situation, the proportion of high-risk area decreases by 100%, 78.05% and 54.44% respectively when the rainfall intensity in the flood season occurs once in 5 years, 10 years and 20 years, and the proportion of the low-risk area decreases by 72.96% when the rainfall intensity in thr flood season occurs every 3 years.
螺山排区 / 风险评估 / 涝灾 / 治理措施 / AHP-CRITIC综合法 {{custom_keyword}} /
Luoshan Drainage Area / risk assessment / waterlogging disaster / countermeasures / synthetic method of AHP and CRITIC {{custom_keyword}} /
表1 AHP-CRITIC综合法权重结果Tab.1 The weight results of synthetic method of AHP and CRITIC |
指标 | W 综合 |
---|---|
汛期降雨强度综合指数 | 0.244 4 |
汛期高温指数 | 0.031 9 |
相对高程 | 0.130 1 |
高程相对标准差 | 0.085 7 |
相对坡度 | 0.050 8 |
滞涝水面率 | 0.107 7 |
产流系数 | 0.071 0 |
水旱比 | 0.055 5 |
地面硬化率 | 0.068 1 |
土壤类型指数 | 0.039 2 |
排涝指数 | 0.115 8 |
表2 2000-2019年分区1涝灾风险度评价结果Tab.2 Assessment results of waterlogging risk values in division 1 from 2000 to 2019 |
年份 | AHP法 | CRITIC法 | 综合法 |
---|---|---|---|
2000 | 0.889 | 0.931 | 0.920 |
2001 | 0.717 | 0.748 | 0.736 |
2002 | 0.820 | 0.870 | 0.850 |
2003 | 0.867 | 0.927 | 0.903 |
2004 | 1.000 | 1.091 | 1.061 |
2005 | 0.768 | 0.829 | 0.808 |
2006 | 0.746 | 0.809 | 0.785 |
2007 | 0.625 | 0.649 | 0.644 |
2008 | 0.802 | 0.853 | 0.840 |
2009 | 0.874 | 1.007 | 0.944 |
2010 | 0.775 | 0.875 | 0.829 |
2011 | 0.798 | 0.904 | 0.855 |
2012 | 0.719 | 0.777 | 0.755 |
2013 | 0.979 | 1.140 | 1.064 |
2014 | 0.689 | 0.739 | 0.721 |
2015 | 0.914 | 0.984 | 0.964 |
2016 | 0.758 | 0.857 | 0.810 |
2017 | 0.994 | 1.124 | 1.069 |
2018 | 0.640 | 0.749 | 0.690 |
2019 | 0.635 | 0.732 | 0.681 |
表3 涝灾治理方案Tab.3 The plans of controlling waterlogging disaster |
方案 | 调整措施 | 汛期降雨年型 |
---|---|---|
0 | 无 | 遭遇3/5/10/20 a一遇汛期降雨年型 |
1 | 改造各分区的排水渠系及灌排泵站,提升分区设计排涝能力,由此增加排涝能力50% | |
2 | 改造各分区的排水渠系及灌排泵站,提升分区设计排涝能力至规划水平。 | |
3 | 分区内滞涝水面率提高至2000年以前的水平,开展退耕还湖等措施 | |
4 | 汛期期间,排区内作物全部种植水稻,将水旱比提升至100%。 | |
5 | 排涝能力提高50%+滞涝水面率提高 | |
6 | 排涝能力提高至规划水平+滞涝水面率提高 | |
7 | 排涝能力提高50%+水旱比提高 | |
8 | 排涝能力提高至规划水平+水旱比提高 | |
9 | 滞涝水面率提高+水旱比提高 | |
10 | 排涝能力提高50%+滞涝水面率提高+水旱比提高 | |
11 | 排涝能力提高至规划水平+滞涝水面率提高+水旱比提高 |
表4 不同措施方案下的风险度值Tab.4 Risk values under different measures |
分区 | 3 a一遇 | 5 a一遇 | 10 a一遇 | 20 a一遇 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
方案10 | 方案11 | 方案10 | 方案11 | 方案10 | 方案11 | 方案10 | 方案11 | ||||
分区1 | 0.767 | 0.766 | 0.912 | 0.911 | 1.045 | 1.044 | 1.150 | 1.149 | |||
分区2 | 0.848 | 0.847 | 0.994 | 0.992 | 1.126 | 1.125 | 1.231 | 1.230 | |||
分区3 | 0.910 | 0.909 | 1.055 | 1.054 | 1.188 | 1.187 | 1.293 | 1.292 | |||
分区4 | 0.870 | 0.869 | 1.015 | 1.014 | 1.148 | 1.147 | 1.253 | 1.252 | |||
分区5 | 0.907 | 0.907 | 1.052 | 1.052 | 1.185 | 1.185 | 1.290 | 1.290 | |||
分区6 | 0.864 | 0.861 | 1.009 | 1.006 | 1.142 | 1.139 | 1.247 | 1.244 | |||
分区7 | 0.952 | 0.952 | 1.097 | 1.097 | 1.230 | 1.230 | 1.335 | 1.335 | |||
分区8 | 0.772 | 0.771 | 0.917 | 0.916 | 1.050 | 1.049 | 1.155 | 1.154 | |||
分区9 | 0.811 | 0.810 | 0.957 | 0.955 | 1.089 | 1.088 | 1.194 | 1.193 | |||
分区10 | 0.906 | 0.906 | 1.051 | 1.051 | 1.184 | 1.184 | 1.289 | 1.289 | |||
分区11 | 0.833 | 0.832 | 0.978 | 0.977 | 1.111 | 1.110 | 1.216 | 1.215 | |||
分区12 | 0.784 | 0.784 | 0.929 | 0.929 | 1.062 | 1.062 | 1.167 | 1.167 | |||
分区13 | 0.776 | 0.772 | 0.921 | 0.917 | 1.054 | 1.050 | 1.159 | 1.155 | |||
均值 | 0.846 | 0.845 | 0.991 | 0.990 | 1.124 | 1.123 | 1.229 | 1.228 |
1 |
卢少为,朱勇辉,魏国远,等. 我国近期涝灾研究综述[J]. 中国农村水利水电, 2009(7):61-64.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
彭广,刘立成. 洪涝[M]. 北京: 气象出版社, 2003.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
朱建强. 易涝易渍农田排水应用基础研究[M]. 北京: 科学出版社, 2007.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
温季,王少丽,王修贵. 农业涝渍灾害防御技术[M]. 北京: 中国农业科技出版社, 2000.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
罗文兵,王修贵,史德亮,等. 平原湖区外江水位变化对排涝流量的影响[J]. 农业工程学报, 2016,32(15):126-132.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
项瑛,程婷,王可法,等. 江苏省连阴雨过程时空分布特征分析[J]. 气象科学, 2011,31():36-39.
增刊1
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
高静,侯双双,姜会飞,等. 湖北省棉花洪涝灾害风险分析[J]. 中国农业大学学报, 2011,16(3):60-66.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
陈丽丽,刘普幸,姚玉龙,等. 1960-2010年甘肃省不同气候区SPI与Z指数的年及春季变化特征[J]. 生态学杂志, 2013,32(3):704-711.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
柏秦凤, 贺文丽, 梁轶. 陕南玉米涝渍灾害指标构建与风险区划[J]. 陕西气象, 2019(3):1-8.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
霍治国, 李世奎, 王素艳, 等. 主要农业气象灾害风险评估技术及其应用研究[J]. 自然资源学报, 2003,18(6):692-703.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
魏一鸣, 张林鹏, 范英. 基于Swarm的洪水灾害演化模拟研究[J]. 管理科学学报, 2002(6):39-46.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
刘希林, 唐川. 泥石流危险性评价[M]. 北京: 科学出版社, 1995.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
盛绍学, 霍治国, 石磊. 江淮地区小麦涝渍灾害风险评估与区划[J]. 生态学杂志, 2010,29(5): 985-990.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
陈皓锐, 王少丽, 韩松俊, 等. 里下河平原湖区农田涝灾风险评估:以高邮市运东地区为例[J]. 排灌机械工程学报, 2017,35(10):887-896.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
吴舒祺, 赵文吉, 王志恒, 等. 基于GIS的洪涝灾害风险评估及区划:以浙江省为例[J]. 中国农村水利水电, 2020(6):51-57.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
朱枫,廖小红,王维俊,等. 洞庭湖烂泥湖水系洪涝灾害风险评估与应对措施[J]. 中国农村水利水电, 2021(1):18-21.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
范雨娴,霍治国,尚莹. 湖南油菜春季涝渍灾变等级指标与灾损评估[J]. 中国农业资源与区划, 2019,40(9):37-47.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
欧光华,黄泽钧,白宪台,等. 四湖排水系统优化调度及决策支持系统[M]. 武汉:武汉大学出版社, 2008.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
张伟,罗文兵,何军,等. 四湖流域螺山排区农田涝渍灾害风险评估[J]. 中国农村水利水电, 2021(1):125-131.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
刘晓悦,杨伟,张雪梅. 基于改进层次法与CRITIC法的多维云模型岩爆预测[J]. 湖南大学学报(自然科学版), 2021,48(2):118-124.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
李国琪. 基于层次分析法节段梁拼装施工风险评估[J]. 价值工程, 2019,38(16):75-77.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
孙即祥. 现代模型识别[M]. 北京:高等教育出版社, 2008.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |