
射月沟水库溃坝洪水模拟及溃坝原因分析
赵悬涛, 刘昌军, 王文川, 顾斌杰, 杨昆, 张淼, 马建明
射月沟水库溃坝洪水模拟及溃坝原因分析
Dam Break Flood Simulation of Sheyuegou Reservoir and Reasons for the Dam Break
针对暴雨洪水造成的溃坝过程复杂、溃坝水流与溃口变化快及灾害危害大等特点,以射月沟水库实际溃坝洪水为研究对象,利用实测和调查资料,基于时空变源水文模型和二维水动力学方法模拟分析了射月沟水库洪水形成、溃坝过程、溃坝水流与机理。研究结果表明:射月沟入库洪峰流量模拟值为1 915 m3/s,与调查结果相比,误差仅为3.5%;短历时极端强降雨引发远超水库防洪能力的特大洪水是造成漫顶溃坝的决定性因素;二宫村二队、三队受灾最为严重,淹没水深在2~6 m之间;下游河道出现两次洪峰过程及大坝下游河道束窄是造成下游村庄人员伤亡和经济财产损失的重要原因。采用的方法能较好地解决射月沟流域暴雨洪水、溃坝过程及洪水淹没过程的计算问题,可为溃坝机理分析和灾害损失评估提供案例支撑和技术参考。
In view of the complex dam break process caused by heavy rain and floods, rapid changes in dam break flow and breach, large disaster hazards, this paper takes the actual dam break flood of Sheyuegou Reservoir as the research object by using measured and survey data. This paper simulates and analyzes Sheyuegou Reservoir flood formation, dam break process, dam break flow and mechanism based on a spatio-temporal variable source hydrological model and two-dimensional hydrodynamic method. The results of the study show that the simulated value of peak discharge is 1 915 m3/s, and the error is only 3.5% compared with the survey results. The extreme heavy rainfall in a short duration caused the flood that far exceeded the flood control capacity of the reservoir, which caused the dam to burst. The second and third teams of Ergong Village were affected most seriously, and the submerged water depth was between 2~6 m. Two flood peaks in the downstream river course and the narrowing of the downstream river course of the dam are important reasons, which cause economic and property losses in the downstream villages. The method adopted in this paper can better solve the calculation problems of the storm flood, dam break process and flood inundation process in Sheyuegou Basin. It can provide support and technical reference for dam break mechanism analysis and disaster loss assessment.
射月沟水库 / 溃坝洪水 / 数值模拟 / 水文模型 / 水动力模型 {{custom_keyword}} /
Sheyuegou Reservoir / dam break flood / numerical simulation / hydrological model / hydrodynamic model {{custom_keyword}} /
表1 基础数据Tab.1 Basic data |
数据类型 | 分辨率 | 时间 | 数据来源 |
---|---|---|---|
卫星雷达融合降水数据 | 5 km | 2018-07-31 | 气象局共享数据 |
DEM | 1 m, 30 m | 2018, 2015 | 现场扫描点云、地理空间数据云 |
遥感影像 | 2.5 m, 30 m | 2015 | 山洪灾害调查评价成果 |
小流域及基础属性 | 10~50 km2 | 2015 | 山洪灾害调查评价成果 |
土地利用 | 30 m | 2015 | 山洪灾害调查评价成果 |
土壤质地 | 30 m | 2015 | 山洪灾害调查评价成果 |
水库基本情况 | 2018 | 搜集水库设计资料 | |
溃坝过程及洪痕 | 2018-08-02 | 现场调查资料 |
图6 射月沟水库7·31入库洪水过程线Fig.6 The flood process line of Sheyuegou Reservoir on July 31 |
表2 研究区域最大淹没水深占比情况Fig.2 The proportion of the largest submerged water depth in the study area |
淹没水深/m | 0~1 | 1~2 | 2~3 | 3~6 | 6~9 | >9 |
---|---|---|---|---|---|---|
占比/% | 54.4 | 19.8. | 11.4 | 11.6 | 2.2 | 0.6 |
1 |
杨哲豪, 吴钢锋, 张科锋, 等. 基于非结构网格的二维溃坝洪水数值模型[J]. 水动力学研究与进展(A辑), 2019, 34(4):520-528.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
蒋先刚,崔鹏,王兆印,等. 堰塞坝溃口下切过程试验研究[J]. 四川大学学报(工程科学版), 2016,48(4):38-44.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
牛志攀,许唯临,张建民,等. 堰塞湖冲刷及溃决试验研究[J]. 四川大学学报(工程科学版), 2009,41(3):90-95.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
李云,王晓刚,宣国祥,等. 均质土坝漫顶溃坝模型相似准则研究[J]. 水动力学研究与进展A辑, 2010,25(2):270-276.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
刘青泉,安翼. 漫顶溃坝过程的水土耦合数值模型研究[J]. 泥沙研究, 2019,44(3):13-18.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
王笑,陈辉,张东,等. 溃坝波数值模拟及其在坡面水流问题中的应用[J]. 水电能源科学, 2019,37(8):30-33.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
刘慧玲,李海桥. 基于光滑粒子流体动力学方法的溃坝水流模拟[J]. 人民长江, 2019,50(7):150-154.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
张大伟, 程晓陶, 黄金池, 等.基于Godunov格式的溃坝水流数学模型[J]. 水科学进展, 2010,21(2):167-172.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
马利平,侯精明,张大伟,等. 耦合溃口演变的二维洪水演进数值模型研究[J]. 水利学报, 2019,50(10):1 253-1 267.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
郭良,丁留谦,孙东亚,等. 中国山洪灾害防御关键技术[J]. 水利学报, 2018,49(9):1 123-1 136.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
王玉丽,陈平星,李萌. 基于IFMS软件实现新疆某中小河流洪水计算及风险分析[J]. 中国水利, 2017(5):69-72.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
姜兴培. 射月沟水库二期加高设计要点[J]. 水利水电技术, 2016,47(3):68-69.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
马珊,刘昌军,何秉顺,等. 温德河流域暴雨洪水时宝特征及模似分析[J]. 水利水电技术, 2019,50(6):78-84.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
魏红艳,梁艳洁,陈萌,等. 基于Roe格式的不规则地形上浅水模拟[J]. 武汉大学学报 (工学版), 2019,52(1):7-12,82.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
李炜. 水力计算手册[M]. 北京: 中国水利水电出版社, 2005.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |