
渐扩式消力池体型优化研究
何志亚, 向鹏鹏, 洪彰华, 刘文超
渐扩式消力池体型优化研究
Research on the Optimization of Gradual Expanding Stilling Basin
在俄垤水库的水工模 型试验中发现其渐扩式消力池内发生远驱式水跃,流态较差,无法满足消能防冲要求。为解决此问题,采用数值分析软件FLOW-3D探究了渐扩式消力池体型参数变化对池内流态、淹没度、消能率等的影响变化规律,结果表明:对于发生远驱式水跃的渐扩式消力池,增加尾坎高度可以显著提高淹没度,选择合适的尾坎高度不仅能改善池内流态还可将水跃消能率控制在合理范围内;增大扩散角和池长,对淹没度和消能率影响较小且于改善流态无益。根据结果推荐了合理的体型方案并通过物理模型验证。
In the hydraulic model test of Edie reservoir, it was found that the repelled downstream hydraulic jump occurred in the gradual expanding stilling basin, and the flow state was poor, which could not meet the requirements of energy dissipation and scouring prevention. In order to solve this problem, numerical analysis software FLOW-3D was used to explore the influence of the body type parameters of the gradual expanding stilling basin on the flow state, inundation degree, energy dissipation rate and so on in the stilling basin, The results show that: for the gradual expanding stilling basin with the repelled downstream hydraulic jump, increasing the height of the tail can significantly improve the inundation degree, the appropriate height of the tail sill can not only improve the flow state in the stilling basin, but also control the energy dissipation rate to a reasonable range; the increase of diffusion angle and pool length has little effect on the inundation degree and energy dissipation rate and is not beneficial to improving the flow state. Based on the results, a reasonable shape parameters was recommended and verified by physical model. The research results can provide a reference for design optimization in the same type of engineering.
消力池 / FLOW-3D / 数值模拟 / 模型试验 {{custom_keyword}} /
stilling basin / FLOW-3D / numerical simulation / model test {{custom_keyword}} /
表1 不同组合消力池体型参数Tab.1 Body parameters of different combinations of the stilling basin |
组次 | 扩散角/(°) | 池长/m | 尾坎高/m | 影响因素 |
---|---|---|---|---|
1 | 3.0 | 38 | 0 | |
2 | 3.5 | 38 | 0 | 扩散角 |
3 | 4.0 | 38 | 0 | |
4 | 3.0 | 39 | 0 | 池长 |
5 | 3.0 | 40 | 0 | |
6 | 3.0 | 41 | 0 | |
7 | 3.0 | 38 | 0.5 |
尾坎高度 |
8 | 3.0 | 38 | 1.0 | |
9 | 3.0 | 38 | 1.5 |
表2 数值模型与物理模型数据对照表Tab.2 Comparison between numerical model and physical model data |
参数 | 消力池进口 | 跃前断面 | 跃后断面 | 消力池出口 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
水深/ m | 流速/ (m·s-1) | 水深/ m | 位置 | 流速/ (m·s-1) | 水深/ m | 位置 | 流速/ (m·s-1) | 水深/ m | 流速/ (m·s-1) | |
数值模型 | 0.84 | 20.89 | 1.27 | 9.20 | 20.51 | 6.20 | 32.50 | 2.73 | 5.92 | 3.02 |
物理模型 | 0.80 | 22.75 | 1.43 | 9.53 | 21.35 | 6.19 | 34.33 | 4.32 | 6.19 | 3.15 |
表3 各组次方案流速及特征水力参数Tab.3 Flow velocity and characteristic hydraulic parameters of each scheme |
组次 | 入池流速/ (m·s-1) | 收缩断面 | 跃前断面 | 出池流速/ (m·s-1) | ||||
---|---|---|---|---|---|---|---|---|
流速/(m·s-1) | 水深/m | Froude数 | 流速/(m·s-1) | 水深/m | Froude数 | |||
第1组 | 20.89 | 21.95 | 0.66 | 8.63 | 20.51 | 1.27 | 5.81 | 3.02 |
第2组 | 21.39 | 22.09 | 0.64 | 8.82 | 21.70 | 1.23 | 6.25 | 2.86 |
第3组 | 20.95 | 21.58 | 0.63 | 8.68 | 20.32 | 1.12 | 6.13 | 2.62 |
第4组 | 21.39 | 22.07 | 0.58 | 9.26 | 21.18 | 1.29 | 5.96 | 3.38 |
第5组 | 20.95 | 22.10 | 0.57 | 9.35 | 18.91 | 1.37 | 5.16 | 3.97 |
第6组 | 20.96 | 21.35 | 0.55 | 9.20 | 17.79 | 1.25 | 5.08 | 4.04 |
第7组 | 21.38 | 22.07 | 0.74 | 8.20 | 20.56 | 1.29 | 5.78 | 6.60 |
第8组 | 21.38 | 22.01 | 0.87 | 7.54 | 20.68 | 1.32 | 5.75 | 5.73 |
第9组 | 17.04 | 22.34 | 0.92 | 7.44 | 21.37 | 1.30 | 5.99 | 6.46 |
表4 各组次方案消力池水跃消能率及淹没度Tab.4 Energy dissipation rate and submergence degree of water jump of each schemes |
组次 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
水跃消能率/% | 70.72 | 71.45 | 72.26 | 71.27 | 71.48 | 72.35 | 71.15 | 68.48 | 65.50 |
淹没度 | 0.83 | 0.84 | 0.84 | 0.81 | 0.81 | 0.80 | 0.87 | 1.08 | 1.27 |
表5 消力池水跃特征参数Tab.5 Characteristic parameters of hydraulic jump in stilling basin |
工况 | 参 数 | |||||
---|---|---|---|---|---|---|
收缩断面流速/(m·s-1) | 收缩断面Froude数 | 跃后水深实测值/m | 池末水深hT /m | 淹没系数 | 水跃消能率/% | |
消能防冲水位 | 23.10 | 8.56 | 6.05 | 6.69 | 1.11 | 68.4 |
设计水位 | 24.76 | 8.95 | 6.51 | 7.56 | 1.16 | 58.5 |
1 |
吴子荣,包中进. 多级消力池水力特性的研究及其应用[J]. 水利水电技术, 1998(12):17-19.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
谭高文,韩昌海,余凯文. 低弗劳德数水流二级消力池体型参数试验研究[J/OL]. 水科学进展, 2018,29(6):848-857.DOI:10.14042/j.cnki.32.1309.2018.06.010 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
孙双科,柳海涛,夏庆福,等. 跌坎型底流消力池的水力特性与优化研究[J]. 水利学报, 2005(10):1 188-1 193.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
王海军,赵伟,杨红宣,等. 跌坎型底流消能工水力特性的试验研究[J]. 水利水电技术, 2007(10):39-41.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
林秉南,龚振瀛,王连祥. 突泄坝址过程线简化分析[J/OL]. 清华大学学报(自然科学版), 1980(1):17-31.DOI:10.16511/j.cnki.qhdxxb.1980. 01. 003 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
李中枢,潘艳华,韩连超,等. 宽尾墩联合消能工体型选择及水力特性的研究[J]. 水科学进展, 2000(1):82-87.DOI:10.14042/j.cnki.32.1309.2000.01.015 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
刘洪滨,王亚洲,王均星,等. 低Froude数新型消能尾坎数值模拟研究[J]. 中国农村水利水电, 2020(8):221-226,230.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
吴宝琴,张志恒.矩形扩散水跃水力计算新公式[J].水利水电工程设计,2001(2):42-44.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
张志昌,傅铭焕,贾斌,等. 渐扩综合式消力池尾坎高度和作用力的计算[J]. 水资源与水工程学报, 2014,25(6):137-141.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
水工(常规)模型试验规程:SL 155-2012 [S]. 水利部水利水电规划设计总院,2012.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |