
不同改良介质土对生物滞留系统运行性能的影响
唐颖辉, 陈垚, 袁绍春, 朱嘉运, 刘臻
不同改良介质土对生物滞留系统运行性能的影响
The Effect of the Modified Soil Media on the Performance of the Bioretention System
生物滞留系统运行性能受填料层的介质土特性显著影响。为规范填料层介质土级配方式,提高重庆城区生物滞留设施建设水平,结合重庆城区土壤本底调查结果,将壤砂土和细砂,砂土和细砂分别以1∶9和2∶8(质量比)混合形成2类传统生物滞留介质土(BSM1和BSM2)。在此基础上分别添加不同质量比的蛭石(Ver.)、生物炭(BC)、珍珠岩(Per.)作为改良剂形成6种改良介质土,并考察不同介质土下生物滞留系统水力性能和除污特性。结果表明,不同介质土具有不同的初始水力渗透系数和衰减性能,其中BSM2+8%Ver.介质土的水力渗透性能最稳定(渗透系数为41~53 mm/h), 而BSM1+2%BC介质土水力渗透性能衰减最快。所有介质土均可有效去除径流污染物,尤其是可高效去除径流中的悬浮物(SS),出水浊度可达到10~16 NTU;BSM1及其改良组对有机物和营养物的去除能力较BSM2及其改良组强。利用投影寻踪法综合考虑介质土除污能力、水力渗透性能、填料价格等因素,确定不同改良介质土得分的综合排序依次为:BSM1+2%Ver. (0.60) >BSM1 (0.52) >BSM1+2%BC (0.41) >BSM1+2%Per. (0.40) >BSM2+8%Ver. (0.33) >BSM2+8%BC (0.23) >BSM2 (0.15) >BSM2+8%Per. (0.14) 。
The performance of the bioretention system is significantly affected by the soil media characteristics. In order to standardize the gradation of packing soil media and then improve the construction level of bioretention facilities in Chongqing urban area, two types of traditional bioretention soil media (BSM1 and BSM2) are mixed with loamy sand and fine sand in a mass ratio of 1∶9, and sandy soil and fine sand in a mass ratio of 2∶8, respectively, combining the results of the soil background survey in Chongqing. And on this basis, vermiculite (Ver.), biochar (BC) and perlite (Per.) are added as modifiers into BSM1 and BSM2 in different mass ratios, which finally configurates 6 types of modified soil media. Furthermore, the hydraulic permeability and pollutants removal performance of bioretention system with different soil media are investigated. Results show that different soil media shows different initial hydraulic permeability coefficient and attenuation performance, among which, the hydraulic permeability of BSM2+8%Ver. soil medium changes in a stable range of 41~53 mm/h, while the permeability of BSM2+8%BC soil medium has the highest attenuated rate. All soil media show an effective removal performance in runoff pollutants, especially in suspended solids (SS), and the effluent turbidity can reach 10~16 NTU. The removal capacity of the bioretention columns packed with BSM1 and its modified groups in organic pollutants and nutrients are superior to the other columns. Finally, this paper considers the factors of soil medium decontamination capacity, hydraulic permeability and price, the comprehensive ranking of modified soil media using the projection pursuit method: BSM1+2%Ver. (0.60)>BSM1 (0.52)>BSM1+2%BC (0.41)>BSM1+2%Per. (0.40)>BSM2+8%Ver. (0.33)>BSM2+8%BC(0.23)>BSM2 (0.15)>BSM2+8%Per. (0.14).
生物滞留 / 改良介质土 / 水力渗透 / 径流污染控制 / 投影寻踪法 {{custom_keyword}} /
bioretention / modified soil media / hydraulic permeability / runoff pollution control / projection pursuit {{custom_keyword}} /
表1 填料理化性质Tab.1 Physical and chemical properties of the bioretention medium |
填料种类 | 有机质/% | TN/(mg·kg-1) | TP/(mg·kg-1) | 粒径范围/mm | 渗透系数/(mm·h-1) |
---|---|---|---|---|---|
壤砂土 | 2.86 | 616.92 | 122.85 | ≤0.5 | 30 |
砂土 | 3.14 | 503.97 | 314.18 | ≤0.5 | 32 |
细砂 | 0.06 | 105.21 | 1.53 | ≤1.0 | 490 |
蛭石 | 0.14 | 207.41 | 5.10 | 1.0~2.0 | 1 160 |
生物炭 | 4.91 | 9 419.75 | 60.96 | 1.0~9.0 | 925 |
珍珠岩 | 0.09 | 103.70 | 1.86 | 1.5~5.0 | 1 204 |
表2 各介质土中填料的干重质量比Tab.2 Mass ratio of medium in each bioretention soil media |
滤柱 | BSM1/% | BSM2/% | 蛭石/% | 生物炭/% | 珍珠岩/% | 介质土类型 |
---|---|---|---|---|---|---|
BR1 | 98 | 0 | 2 | 0 | 0 | BSM1+2%Ver. |
BR2 | 98 | 0 | 0 | 2 | 0 | BSM1+2%BC |
BR3 | 98 | 0 | 0 | 0 | 2 | BSM1+2%Per. |
BR4 | 100 | 0 | 0 | 0 | 0 | BSM1 |
BR5 | 0 | 92 | 8 | 0 | 0 | BSM2+8%Ver. |
BR6 | 0 | 92 | 0 | 8 | 0 | BSM2+8%BC |
BR7 | 0 | 92 | 0 | 0 | 8 | BSM2+8%Per. |
BR8 | 0 | 100 | 0 | 0 | 0 | BSM2 |
表3 模拟径流雨水水质Tab.3 Semi-synthetic stormwater quality |
污染物指标 | 目标浓度/(mg·L-1) | 来源 | 污染物指标 | 目标浓度/(mg·L-1) | 来源 |
---|---|---|---|---|---|
SS | 394 | 雨水塘底泥(粒径<1 mm) | NO3 --N | 2.10 | KNO3 |
COD | 319 | C6H12O6+C6H5NO2 | Cu | 0.13 | CuSO4 |
TP | 0.9 | KH2PO4 | Zn | 0.73 | ZnCl2 |
TN | 7.3 | NH4Cl+KNO3+C6H5NO2 | Cd | 0.05 | CdCl2 |
NH4 +-N | 4.0 | NH4Cl | Fe | 1.00 | FeCl3 |
表4 介质土综合性能归一化值及综合得分Tab.4 Normalized value of comprehensive performance and ranking of soil media |
滤柱编号 | 介质土类型 | 去除率 | 渗透系数 | 填料单价 | 综合得分 | 排序 | ||||
---|---|---|---|---|---|---|---|---|---|---|
NO3 --N | NH3-N | TN | TP | COD | ||||||
BR1 | BSM1+2%Ver. | 0.96 | 1.00 | 1.00 | 1.00 | 0.85 | 0.18 | 0.60 | 0.60 | 1 |
BR2 | BSM1+2%BC | 1.00 | 0.61 | 0.77 | 0.38 | 0.78 | 0.04 | 0.41 | 0.41 | 3 |
BR3 | BSM1+2%Per. | 0.58 | 0.54 | 0.42 | 0.77 | 0.89 | 0 | 0.40 | 0.40 | 4 |
BR4 | BSM1 | 0.87 | 0.68 | 0.75 | 0.86 | 1.00 | 0.18 | 0.52 | 0.52 | 2 |
BR5 | BSM2+8%Ver. | 0.57 | 0.57 | 0.18 | 0.41 | 0.60 | 1.00 | 0.33 | 0.33 | 5 |
BR6 | BSM2+8%BC | 0.69 | 0.13 | 0 | 0.28 | 0.62 | 0.95 | 0.23 | 0.23 | 6 |
BR7 | BSM2+8%Per. | 0.59 | 0 | 0.03 | 0.84 | 0 | 0.13 | 0.14 | 0.14 | 8 |
BR8 | BSM2 | 0 | 0.44 | 0.13 | 0 | 0.16 | 0.84 | 0.15 | 0.15 | 7 |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
格屿, 李海燕, 张晓然. 城市径流雨水渗滤处理设施渗滤层改良研究进展[J]. 水利水电科技进展, 2015,35(6):96-104.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
李迪, 陈垚, 吕波. 生物滞留系统对溶解性污染物的去除特性及优化途径[J]. 环境工程, 2020,38(10):120-127.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
王书敏. 山地城市面源污染时空分布特征研究[D]. 重庆: 重庆大学, 2012:33-52.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
余义瑞. 山地城市雨水生物滞留系统的滤料层构建及特性分析[D]. 重庆: 重庆交通大学, 2017:19-30.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
高晓丽, 张书函, 肖娟, 等. 雨水生物滞留设施中填料的研究进展[J]. 中国给水排水, 2015(20):17-21.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
低影响开发雨水系统设计标准:DBJ50/T-292-2018 [S]. 重庆:重庆市城乡建设委员会, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
陈垚, 李欣芮, 郑爽, 等. 前期干旱天数对生物滞留系统除氮性能的影响[J]. 环境科学, 2021,42(1):263-273.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
黄显峰, 贾永乐, 方国华. 基于投影寻踪法的城市水生态文明建设评价[J]. 水资源保护, 2016,32(6):117-122.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
邵磊, 周孝德, 杨方廷, 等. 基于自由搜索的投影寻踪水质综合评价方法[J]. 中国环境科学, 2010,30(12):1 708-1 714.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
李琪, 赵志怀. 基于投影寻踪与内梅罗指数组合模型的地下水水质评价[J]. 水电能源科学, 2019,37(11):70-73.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
刘增超, 李家科, 蒋春博, 等. 4种生物滞留填料对径流污染净化效果对比[J]. 水资源保护, 2018,34(4):71-79.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
赵云云, 李骐安, 陈正侠, 等. 基于多目标评价的市政道路径流污染控制生物滞留设施填料优化[J]. 水资源保护, 2021,37(3):96-101.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
曹书勤, 刘畅. 珍珠岩的表面改性剂吸及性能研究[J]. 信阳师范学院学报(自然科学版), 2008,21(4):566-569.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
李金辉, 周涛, 曾超, 等. 泡沫混凝土对模拟氨氮废水的吸附[J]. 环境工程学报, 2017,11(8):4 718-4 724.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
40 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
41 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
42 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |