
基于二元Logistic对城市内涝风险区预测研究
陈韬, 钟传胤, 赵大维, 王前朋, 裘娜
基于二元Logistic对城市内涝风险区预测研究
Research on the Prediction of Urban Waterlogging Risk Area Based on Binary Logistic
在气候变化和快速城市化背景下,城市内涝已经成为一种“城市病”。为了识别内涝风险区及预测研究,从城市空间因素的角度,以北京城六区作为研究区域,收集整理内涝信息和城市空间因素数据。采用二元Logistic回归分析,探究内涝风险区的特点,得出影响内涝的主要城市空间因素依次为汛期降雨量、综合径流系数、高速路网、雨水排放系统及涝点与桥梁的距离,并建立城六区内涝风险区预测模型,使用网络积水地图的积水点进行验证,结果表明预测模型结果准确,在现实中暴雨天气可以根据预测模型在高风险地区或是内涝发生高概率区域地点做好内涝防治措施。
Under the background of climate change and rapid urbanization, urban waterlogging has become an “urban disease”. For identifying waterlogging risk area and prediction research, this paper explores the characteristics of waterlogging risk area, the main urban space factors affecting the waterlogging of flood season rainfall, runoff coefficient, highway system, drainage system and flood point distance and bridge from the perspectives of urban space factors, six areas as the study area, north of the capital collected waterlogging data information and the urban space factors, the binary logistic regression analysis, and waterlogging risk area prediction model is established by using the network map of water of water points for validation, results show that the prediction model is correct. In reality, rainstorm weather can be based on the forecast model in high-risk areas or areas with high probability of waterlogging prevention and control measures.
城市内涝 / 城市空间因素 / 内涝风险区 / 回归分析 {{custom_keyword}} /
urban waterlogging / urban space factor / waterlogging risk area / regression analysis {{custom_keyword}} /
表1 城六区人口普查信息Tab.1 Census information of the six districts of the city |
行政区 | 人口数/人 | 人口密度/(人·km-2) | 面积/km2 |
---|---|---|---|
西城 | 1 106 214 | 21 690 | 51 |
东城 | 708 829 | 16 877 | 42 |
朝阳 | 3 452 460 | 7 330 | 471 |
海淀 | 3 133 469 | 7 270 | 431 |
丰台 | 2 019 764 | 6 644 | 304 |
石景山 | 567 851 | 6 603 | 86 |
表2 气象站汛期降雨量数据 (mm)Tab.2 Rainfall data of weather station during flood season |
区站号 | 年份 | |||||||
---|---|---|---|---|---|---|---|---|
2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | |
北京54511 | 511.6 | 388.7 | 319.6 | 553.0 | 451.2 | 479.4 | 254.2 | 525.8 |
朝阳54433 | 376.1 | 383.8 | 489.1 | 565.9 | 528.4 | 569.6 | 435.1 | 739.9 |
丰台54514 | 432.0 | 343.1 | 520.2 | 547.9 | 526.2 | 354.1 | 331.9 | 467.3 |
海淀54399 | 486.7 | 413.8 | 483.7 | 583.2 | 524.2 | 463.6 | 354.5 | 501.3 |
石景山54513 | 474.2 | 251.0 | 566.5 | 555.1 | 545.8 | 457.2 | 319.5 | 494.5 |
表3 二元Logistic回归结果(LR法)Tab.3 Binary Logistic Regression Results |
自变量 | 解释系数 | 标准误差 | Wald统计 | 自由度 | 显著性 | 优势比OR |
---|---|---|---|---|---|---|
高速路网(a) | 0.021 | 0.007 | 8.314 | 1 | 0.004 | 1.021 |
桥梁距离(b) | 0.042 | 0.010 | 18.441 | 1 | 0 | 1.043 |
径流系数(c) | -0.004 | 0.002 | 4.780 | 1 | 0.029 | 0.996 |
汛期雨量(d) | 0.005 | 0.001 | 72.036 | 1 | 0 | 1.005 |
雨水系统(e) | -0.875 | 0.181 | 23.358 | 1 | 0 | 0.417 |
常量 | -14.230 | 3.621 | 15.447 | 1 | 0 | 0 |
表4 现实积水点在模型中的风险分布Tab.4 Realistic waterlogging point in the risk area in the model |
内涝风险概率 | 内涝点数量 |
---|---|
高度风险区(p≥90%) | 31 |
中高度风险区(90%>p≥70%) | 26 |
中度风险区(70%>p≥50%) | 24 |
低度风险区(p<50%) | 15 |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
宋晓猛,张建云,贺瑞敏,等. 北京城市洪涝问题与成因分析[J]. 水科学进展, 2019,30(2):153-165.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
唐磊,周飞祥,王巍巍,等. 北方城市典型内涝积水问题的系统化解决方案[J]. 中国给水排水, 2020,36(13):139-144.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
李芮, 潘兴瑶, 邸苏闯, 等. 城市内涝应对措施改善效果分析:以清河上清桥为例[J]. 给水排水, 2019,55():128-135.
增刊1
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
田子阳,褚俊英,林永寿,等.多尺度城市内涝风险评价技术及应用[J/OL].水资源保护:1-15[2021-09-18].
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
曹梦然,叶亚平,张其成,等.基于SWMM模型的南京秦淮区暴雨内涝风险分析[J].中国农村水利水电,2019(11):110-114.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
龚诗涵, 肖洋, 方瑜, 等. 中国森林生态系统地表径流调节特征[J]. 生态学报, 2016,36(22):7 472-7 478.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
吴健生, 张朴华. 城市景观格局对城市内涝的影响研究:以深圳市为例[J]. 地理学报, 2017,72(3):444-456.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
刘广. 环城高速路快速施工软基处治及施工关键技术[D]. 西安:长安大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
叶超凡,张一驰,程维明,等. 北京市区快速城市化进程中的内涝现状及成因分析[J]. 中国防汛抗旱, 2018,28(2):19-25.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
刘兴哲. 城市下凹桥区内涝积水综合治理设计探讨[J]. 中国给水排水, 2019, 35(4): 47-53.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
杨佩国,靳京,赵东升,等. 基于历史暴雨洪涝灾情数据的城市脆弱性定量研究:以北京市为例[J]. 地理科学, 2016,36(5):733-741.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
叶瑜,徐雨帆,梁珂,等. 1801年永定河水灾救灾响应复原与分析[J]. 中国历史地理论丛, 2014,29(4):13-19.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
段天顺. 谈谈北京历史上的水患[J]. 中国水利, 1982(3):16-17.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
赵大维. 北京市政给排水基础设施增量优化研究[D]. 北京:北京建筑大学,2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |