
泵站前池改造前后水流流态分析及其节能降耗性能研究
龚成勇, 曾永亮, 李仁年, 马希金
泵站前池改造前后水流流态分析及其节能降耗性能研究
An Analysis of the Flow Pattern Character of Pumping Station Forebay before and after Reconstruction and Research on Energy Conservation and Consumption Reduction
为探寻泵站前池体形优化为节能降耗的贡献,解析泵站前池改造节能降耗机理,以盐环定提水枢纽第三泵站前池为研究对象,数值模拟比较分析其前后流态特征。采用标准k-ε湍流模型方程,利用分离求解器来求解离散方程组,分别对改造前后前池中流态特征进行数值模拟研究。结果表明,泵站前池的体型、尺寸变化对能耗有影响,正向前池中涡流较少,其轴向速度分布均匀度为50.5%,优于侧向进水口均匀度46.9%;分析湍动能和湍动能耗散率数据,正向前池数值优于侧向前池;正向前池能量耗散率随着运行时间,趋于平稳,其能耗率为492.81 W/m2,低于侧向前池能耗率608.13 W/m2,正向前池流态优于侧向前池流态,正向前池节能效果优于侧向前池。
To explore the contribution of the forebay’s shape optimization on energy conservation and consumption in the pumping station and based on the numerical simulation method, the mechanism of energy conservation and consumption reduction of the reconstruction of the pumping station forebay is analyzed, the third pumping station forebay of Yanhuanding Water Station Water Hub is taken as the research object to compare and analyze the flow pattern character before and after reconstruction. The standard k-ε turbulence model equation and the segregated solver are used to solve the discrete equations, and then the flow pattern character of the pumping station forebay before and after transformation is numerically simulated. The results indicate that the changes in the shape and size of the pumping station forebay have impact on the loss of energy consumption. There is less eddy in the front inflow forebay, and the uniformity of the axial velocity distribution is 50.2%, which is better than that of the lateral inlet (46.9%). By using comparative analysis method, both the turbulent kinetic energy and the turbulent energy dissipation rate in the front inflow forebay are better than that of the lateral inflow forebay. The energy dissipation rate in the forebay tends to be stable with the running time, and the energy consumption of the forebay gets close to 492.81 W/m2, which is lower than that of the lateral inflow forebay (608.13 W/m2). The energy-saving effect of the front inflow forebay is better than that of the lateral inflow forebay, and the flow pattern of the front inflow forebay is better than that of the lateral inflow forebay.
泵站前池 / 流态特征 / 流速均匀度 / 节能降耗 / 数值模拟 {{custom_keyword}} /
pumping station forebay / flow pattern character / uniformity of velocity / energy conservation and consumption reduction / numerical simulation {{custom_keyword}} /
表1 侧向和正向前池观测断面参数Tab.1 Parameters of observation sections of lateral and front inflow forebays |
侧向前池 | 垂直水流断面 | 断面编号 | y1-1 | y1-2 | y1-3 | y1-4 | y1-5 | y1-6 | y1-7 | y1-8 | y1-9 | y1-10 | y1-11 | y1-12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
位置(y/m) | 0 | 9.00 | 18.00 | 27.00 | 31.87 | 38.67 | 47.67 | 62.67 | 71.67 | 80.67 | 89.07 | 92.27 | ||
顺水流断面 | 断面编号 | z1-1 | z1-2 | z1-3 | z1-4 | |||||||||
位置(z/m) | 0 | 1.92 | 3.84 | 5.85 | ||||||||||
正向前池 | 垂直水流断面 | 断面编号 | y2-1 | y2-2 | y2-3 | y2-4 | y2-5 | y2-6 | y2-7 | y2-8 | y2-9 | y2-10 | y2-11 | y2-12 |
位置(y/m) | 0 | 6.00 | 12.00 | 18.00 | 24.00 | 30.00 | 36.00 | 42.00 | 48.00 | 54.00 | 60.00 | 66.00 | ||
顺水流断面 | 断面编号 | z2-1 | z2-2 | z2-3 | z2-4 | z2-5 | z2-6 | z2-7 | ||||||
位置(z/m) | 3.00 | 10.80 | 20.35 | 23.24 | 28.99 | 38.34 | 46.83 |
表2 侧向前池样本断面速度均匀度计算成果Tab.2 Calculation results of section velocity uniformity of lateral inflow forebay samples |
项目 | y1-1 | y1-2 | y1-3 | y1-4 | y1-5 | y1-6 | y1-7 | y1-8 | y1-9 | y1-10 | y1-11 | y1-12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
上部 | 1.000 | 0.984 | 0.959 | 0.936 | 0.888 | 0.282 | 0.074 | -0.176 | 0.425 | 0.181 | 0.577 | 0.518 |
中部 | 1.000 | 0.990 | 0.972 | 0.960 | 0.952 | 0.286 | -0.038 | -0.165 | -0.311 | 0.296 | 0.330 | 0.130 |
下部 | 1.000 | 0.991 | 0.975 | 0.960 | 0.950 | 0.275 | -0.060 | 0.109 | -0.200 | 0.164 | 0.252 | 0.721 |
断面加权平均 | 1.000 | 0.989 | 0.969 | 0.952 | 0.930 | 0.281 | -0.008 | -0.077 | -0.029 | 0.214 | 0.386 | 0.456 |
表3 正向前池样本断面速度均匀度计算成果Tab.3 Calculation results of section velocity uniformity of front inflow forebay samples |
项目 | y2-1 | y2-2 | y2-3 | y2-4 | y2-5 | y2-6 | y2-7 | y2-8 | y2-9 | y2-10 | y2-11 | y2-12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
上部 | 1.000 | 0.999 | 0.998 | 0.984 | -0.279 | 0.581 | 0.477 | 0.600 | 0.471 | 0.474 | 0.307 | 0.312 |
中部 | 1.000 | 0.999 | 0.993 | 0.979 | -0.303 | 0.305 | 0.329 | 0.218 | -0.014 | 0.121 | -0.130 | -0.253 |
下部 | 0.999 | 0.961 | 0.927 | 0.892 | -0.410 | -0.398 | 0.455 | 0.393 | 0.564 | 0.376 | 0.527 | 0.422 |
断面加权平均 | 1.000 | 0.986 | 0.973 | 0.952 | -0.331 | 0.163 | 0.420 | 0.404 | 0.340 | 0.323 | 0.235 | 0.160 |
图10 侧向前池出口处断面流速图Fig.10 Flow velocity diagram of the section at the exit of the lateral inflow forebay |
1 |
强昌林,孙玉华.城市供水加压泵站节能降耗的探索与实践[J].中国给水排水,2013,29(2):16-18.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
徐波,高琛,夏辉.开孔导流墩几何参数对闸站工程前池整流效果的影响[J].长江科学院院报,2019,36(2):58-62.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
江文,于建忠,傅宗甫.弯道河段下游泵站进水前池流态及整流措施[J].人民黄河,2019,41(4):83-87,118.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
佟宏伟,王晓升.城市泵站调节池流态改善措施研究[J].中国农村水利水电,2018(2):136-139.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
白玉川,李彬,徐海珏.大跨度泵站多人字型前池导流墩整流分析[J].水电能源科学,2019,37(6):75-79.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
韩峰,梁金栋.单侧向泵站进水前池流态数值模拟与改善[J].中国农村水利水电,2018(8):190-193.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
赵浩儒,杨帆,刘超.侧向进水泵站流态模拟及改善研究[J].水利水电技术,2017,48(7):79-84.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
罗灿,刘超.多机组泵站侧向进水特性模拟和改进研究[J].水力发电学报,2015,34(1):207-214.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
施伟,成立.水源地取水泵站水流流态数值模拟与改善[J].南水北调与水利科技(中英文),2020,18(2):159-176.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
常美,徐国宾.最小能耗率原理的数值水槽模拟验证[J].泥沙研究,2013(2):67-71.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |