
An Analysis of Soil Moisture Temporal Stability and its Controlling Factors of Underlying Surface in Babaohe Watershed
Ling-na WEI, Ru-lin OUYANG, Yong-yu XIE, Luo-fu-jie GUO, Jian-zhi DONG
An Analysis of Soil Moisture Temporal Stability and its Controlling Factors of Underlying Surface in Babaohe Watershed
The concept of temporal stability embodies the spatial pattern of soil moisture persist with time. Hence, measurements at the representative points can reflect the mean soil moisture of the watershed. This method facilitates the estimation of soil moisture at watershed scale. This paper analyzes the characteristics of soil moisture temporal stability at different depths in Babaohe Watershed in the upper reaches of Heihe River. The representative points to reflect the mean-watershed soil moisture are located. Then combining the soil, vegetation and topographic conditions of the watershed, the key factors that control the temporal stability of spatial soil moisture distribution are investigated. The results show that most of the representative points are located at the area covered by dominant vegetation and main soil type. The representative points in Babaohe Watershed are No.23 and 13 at the depth of 5 cm, No.47 at the depth of 10 cm, and No.37 at the depth of 20 cm. The temporal stability increase with the depth in the vertical direction. The main controlling factors of the soil moisture temporal stability in this basin are the vegetation and soil type. In the area covered by the alpine grass and carex steppe, and brown and black felt soils, it is easier to obtain the average surface soil moisture above the depths of 10 cm. This study can provide a theoretical reference for the soil water estimation at watershed scale, and a scientific basis for optimizing the design of observation network of watershed soil moisture.
soil moisture / temporal stability / Babaohe Watershed / underlying surface / representative points {{custom_keyword}} /
Tab.1 Statistics of representative points at the depths of 4, 10 and 20 cm表1 埋深4、10和20 cm代表性点特征统计 |
埋深/cm | 站点号 | 土壤类型 | 植被覆盖类型 | 地形湿度指数TI | 平均相对偏差MRD/% | 相对偏差标准差SDRD/% | 综合指标 ITS/% | 线性回归方程 | 相关系数 R 2 |
---|---|---|---|---|---|---|---|---|---|
4 | 13 | 棕黑毡土 | 亚高山落叶阔叶灌丛 | 6.19 | 0.59 | 15.5 | 15.51 | y = 0.872 1 x - 0.036 2 | 0.80 |
23 | 棕黑毡土 | 高寒禾草、苔草草原 | 7.11 | 7.08 | 22.5 | 23.59 | y = 0.626 4 x + 0.018 9 | 0.86 | |
10 | 47 | 黑毡土 | 高寒嵩草、杂类草草甸 | 4.9 | -0.93 | 19.5 | 19.52 | y = 0.968 1 x - 0.024 8 | 0.76 |
20 | 37 | 棕黑毡土 | 寒温带和温带山地针叶林 | 7.18 | 3.59 | 14.96 | 15.38 | y = 1.492 8 x - 0.045 7 | 0.80 |
Tab.8 Allowable emission and reduction of pollutants from “top ten” tributaries表8 “前十”支流污染物允许排放量及削减量 (t/a) |
水质断面 | 氨氮允许排放量 | CODCr允许排放 | 氨氮削减量 | CODCr削减量 | ||||
---|---|---|---|---|---|---|---|---|
枯水期 | 丰水期 | 枯水期 | 丰水期 | 枯水期 | 丰水期 | 枯水期 | 丰水期 | |
大坳 | 4 738 | 4 992 | 46 459 | 47 478 | 4 807 | 3 794 | 8 638 | 8 388 |
鸦岗 | 4 151 | 4 732 | 62 457 | 46 766 | 5 457 | 4 184.8 | 9 118 | 14 389 |
海珠桥 | 4 874 | 4 903 | 47 923 | 59 392 | 3 602 | 6 138 | 19 383 | 19 268 |
白鹤洞 | 4 876 | 4 675 | 47 923 | 56 366 | 3 259 | 4 905 | 13 746 | 13 813 |
1 |
张秀英,冯学智,赵传燕. 基于GIS的黄土高原小流域土壤水分时空分布模拟:以定西安家沟为例 [J]. 自然资源学报, 2005,20(1):133-139.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
李伯祥,陈晓勇,徐雯亭. 基于SMOS 降尺度数据的土壤水分时空变化分析研究 [J]. 中国农村水利水电, 2019(8):5-11.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
王树果,马春锋,赵泽斌,等. 基于Sentinel-1 及Landsat 8 数据的黑河中游农田土壤水分估算 [J]. 遥感技术与应用,2020,35(1):13-22.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
原黎明, 赵传燕. 黑河上游坡面尺度土壤贮水量的时间稳定性[J]. 兰州大学学报:自然科学版, 2017,53(2):178-185.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
王珊,胡振华,张宝忠,等. 基于有效最大含水量的土壤水分监测优化布设方法 [J]. 中国农村水利水电, 2018(5):1-5.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
魏玲娜,陈喜,董建志,等. 基于分布式水文模拟的流域土壤水分时间稳定性分析 [J]. 水利水电技术,2019,50(5):104-114.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
刘鑫,毕华兴,李笑吟,等. 晋西黄土区基于地形因子的土壤水分分异规律研究[J]. 土壤学报,2007,44(3):412-417.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
周雨石. 基于改进热惯量模型土壤含水量时空变化研究:以黑河上游八宝河流域为例[D]. 河南开封:河南大学,2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
李广文. 黑河上游八宝巧流域土壤特性及入渗模拟研究[D]. 西安:陕西师范大学, 2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
侯学煜. 1∶100 000 0中国植被图集[DB]. 科学出版社,2001.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
刘菊兰. 中华人民共和国1∶100万土壤图[CM]. 中国出版年鉴,1996.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
高红侠. 典型高寒山区八宝河流域土壤水分的时空变异性与降尺度研究[D]. 南京:南京师范大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
上接第 49 页)
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |