为了解西南山区典型河道型水库的营养状态变化规律,并探究一种更为适合河道型水库、可靠的富营养化评价方法,本文以紫坪铺水库为例,基于2015年8月~2018年1月连续30个月对水库7个点位的跟踪监测,运用主成分分析法判别营养状态变化的主控因子及进行评价讨论,结果表明:①水库水体中藻类存在明显的演替规律,甲藻优势度下降14%,绿藻优势度上升26%;②通过主成分分析发现,水库中藻类、营养状态变化的主控因子为DO、NH3-H、TP和TN;③与常规的综合营养状态法相比,主成分分析法得出的评价结果更为可靠,与藻密度值、藻类皮娄指数的相关性各提高了0.338、0.279;④运用多元线性回归得到了水库藻类快速估算公式,通过6个月的实测值检验,公式误差可控制在45%以内。在更加全面准确、客观地反映水库营养状态上具有一定的研究意义。
Abstract
To gain insight into the change law of nutrient status of typical channel reservoirs in the southwest mountainous area of China, and to look for a more resilient, reliable evaluation method for eutrophication in channel reservoirs, this paper adopts PCA (principal component analysis) in a way that helps identify key factors that control the change of nutrient status and evaluate and discuss the results on the basis of a case study in Zipingpu Reservoir in which 7 locations of the reservoir are subject to tracking and monitoring for 30 months from August 2015 to January 2018. The results suggest that, ①The algae in the water of Reservoir clearly features evolutionary changes 14% decline in the dominance of dinoflagellate means 26% rise in the dominance of chlorophyta; ②PCA finds that the main control factors related to the changes of algae and nutrient status turn out to be DO, NH3-H, TP, TN; ③In comparison to the conventional method focusing on the comprehensive trophic status, PCA is able to deliver a more reliable evaluation result marked by an increase of 0.338 in the correlation with algae density and an increase of 0.279 in the evenness index of algae. ④A formula of flash estimation for algae in the reservoir is developed by using multivariate linear regression, with errors in the formula being controlled within 45% through a 6-month test on measured value. In this case, the paper bears certain research significance to reflecting the nutrient status of reservoir in a more comprehensive, accurate and objective way.
关键词
河道型水库 /
营养状态 /
主成分分析 /
藻类演替 /
估算公式
{{custom_keyword}} /
Key words
river type reservoir /
nutritional status /
principal component analysis /
algae succession /
estimation formula
{{custom_keyword}} /
基金
国家自然科学基金项目( 51679156) ; 国家自然科学基金
重大研究计划项目( 91547211) 。
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]王明翠, 刘雪芹, 张建辉.湖泊富营养化评价方法及分级标准[J].中国环境监测, 2002, 18(5):47-49
[2]于爱敏, 尚广萍, 于洋.湖泊富营养化的综合评价方法的探讨与实例[J].内蒙古环境科学, 2009, 21(3):52-55
[3]李海彬, 张小峰, 黄东, et al.河道型水库动库容对洪水调度的影响研究[J]. 中国农村水利水电, 2015(10):90-95.
[4]张耀文, 李洪, 李嘉, et al.西南山区典型河道型水库藻类功能群时空演替特征及其影响因素:以紫坪铺水库为例[J]. 环境科学, 2018(6).
[5]Xiao W, Liu X, Irwin A J, et al.Warming and eutrophication combine to restructure diatoms and dinoflagellates[J]. Water Research, 2017.
[6]张宝, 刘静玲.湖泊富营养化影响与公众满意度评价方法[J].水科学进展, 2009, 20(05):695-700
[7]贡力, 贡力, 余涛.集对分析法在水安全评价中的应用[J]. 中国农村水利水电, 2015(1):58-62.
[8]鲍广强, 尹亮, 余金龙, et al.基于综合营养状态指数和BP神经网络的黑河富营养化评价[J]. 水土保持通报, 2018.
[9]张文霖.主成分分析在SPSS中的操作应用[J]. 市场研究, 2005(12):31-34.
[10]褚帆, 刘宪斌, 刘占广, 等.天津近岸海域海水富营养化评价及其主成分分析[J].海洋通报, 2015, 34(1):107-112
[11]Primpas I, Tsirtsis G, Karydis M, et al.Principal component analysis: Development of a multivariate index for assessing eutrophication according to the European water framework directive[J].Ecological Indicators, 2010, 10(2):0-183
[12]国家环境保护总局.水和废水监测分析方法.第4版[M]. 中国环境科学出版社, 2002.
[13]翁建中.中国常见淡水浮游藻类图谱[M]. 上海科学技术出版社, 2010.
[14]王司阳, 周子俊, 汪志聪.三峡水库营养元素的分布及其与藻类生长的关系[J].水生生物学报, 2015, 39(5):910-919
[15]国家环境保护总局科技标准司.中国湖泊富营养化及其防治研究[M]. 中国环境科学出版社, 2001.
[16]刘林峰, 周先华, 高健, 等.神农架大九湖湿地浮游植物群落结构特征及营养状态评价[J]. 湖泊科学, 2018, 30(2).
[17]马牧源, 崔丽娟, 张曼胤.白洋淀附着藻类的初级生产力及其与水质的关系[J].生态学报, 2018, 38(2):443-456