夹层结构或互层结构是常见的坡体结构形式,软弱夹层或岩层通常具有较弱的透水性,对边坡地下水分布及渗透特性具有重要影响。本文基于水体质量守恒方程及V-G模型,采用PVI方法对含夹层边坡进行非饱和渗流模拟。通过实验对比,验证了该算法的可靠性。现场尺度的模拟结果表明,含低渗透性夹层的边坡易在夹层处表现出地下水分层的现象,且夹层的渗流特性和发育程度直接影响该区域地下水的分布情况:随着夹层非饱和参数α的增大(或n的减小),夹层与邻近岩土体渗透系数比的减小,夹层厚度与高度的增加,地下水分层现象更加显著。该研究揭示了含夹层边坡地下水特殊分布模式,也对类似结构岩土体的非饱和水力参数确定有一定的参考价值。
Abstract
The interlayer structure or multi-layer structure is a common form of slope structure. The weak interlayer or rock layer is usually of low permeability, which has a significant influence on the groundwater distribution and permeability characteristics of the slope. Based on the water mass conservation equation and the V-G model, the unsaturated seepage of the layered slope is simulated with the PVI method. The reliability of the algorithm is verified by comparing the experimental results. The site-scale simulation results show that the slope with impeding layers is easy to cause the distribution of groundwater in multiple layers. And the seepage properties and development degree of the interlayer directly affect the distribution of groundwater in the region. Specifically, the increase of the parameter α (or the decrease of n), the decrease of the permeability ratio between interlayer and adjacent rock and soil and the increase of its thickness and elevation cause more significant distribution of stratified groundwater. This study reveals a special distribution pattern of groundwater in layered slopes, which provides reference for determining the unsaturated hydraulic parameters of similar geological structures.
关键词
含夹层边坡 /
非饱和渗流 /
有限元模拟 /
V-G 模型 /
地下水分层
{{custom_keyword}} /
Key words
layered slopes /
unsaturated seepage flow /
finite element simulation /
van Genuchten model /
multiple water table
{{custom_keyword}} /
基金
中国长江三峡集团公司科研项目资助项 目 ( XLD/
2119) ; 夹岩水利枢纽及黔西北供水工程关键技术研究
与应用项目资助项目( 黔科合重大专项字[2017]3005
号) ; 库区与枢纽区地质环境演化规律及预测方法课题
资助( 2018YFC0407001) 。
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Anagnostou G, Schuerch R, Ramoni M. TBM tunnelling in complex rock formations: Proceedings on XV MIR conference “Interventi e opere nelle formazioni complesse”, Torino, 2014[C].
[2]Zingg S, Anagnostou G. Tunnel Face Stability and the Effectiveness of Advance Drainage Measures in Water-Bearing Ground of Non-uniform Permeability[J]. Rock Mechanics and Rock Engineering, 2018,51(1):187-202.
[3]何满朝. 软岩工程力学的理论与实践[M]. 北京: 中国矿业大学出版社, 1996.
[4]Rulon JJ, Rodway R, Freeze RA. The Development of Multiple Seepage Faces on Layered Slopes[J]. Water Resources Research, 1985,21(11):1625-1636.
[5]朱伟, 程南军, 陈学东, 等. 浅谈非饱和渗流的几个基本问题[J]. 岩土工程学报, 2006(02):235-240.
[6]Neuman S P. Saturated-Unsaturated Seepage by Finite Elements[J]. Journal of the Hydraulics Division, 1973,99(12):2233-2250.
[7]AKAI K, OHNISHI Y, NISHIGAKI M. Finite element analysis of saturated-unsaturated seepage in soil: Proceedings of the Japan society of civil engineers, 1977[C]. Japan Society of Civil Engineers.
[8]吴良骥, Bloomaburg L. G. 饱和一非饱和区中渗流问题的数值模型[J]. 水利水运科学研究, 1985(2).
[9]高骥, 雷光耀, 张锁春. 堤坝饱和一非饱和渗流的数值分析[J]. 岩土工程学报, 1988,10(6):28-37.
[10]张家发. 三维饱和非饱和稳定非稳定渗流场的有限元模拟[J]. 长江科学院院报, 1997(03):36-39.
[11]朱岳明, 龚道勇. 三维饱和非饱和渗流场求解及其逸出面边界条件处理[J]. 水科学进展, 2003(01):67-71.
[12]Borsi I, Farina A, Primicerio M. A rain water infiltration model with unilateral boundary condition: qualitative analysis and numerical simulations[J]. Mathematical Methods in the Applied Sciences, 2006,29(17):2047-2077.
[13]Hu R, Chen Y, Zhou C, et al. A numerical formulation with unified unilateral boundary condition for unsaturated flow problems in porous media[J]. Acta Geotechnica, 2017,12(2):277-291.
[14]戚国庆, 黄润秋. 土水特征曲线的通用数学模型研究[J]. 工程地质学报, 2004(02):182-186.
[15]徐绍辉, 张佳宝, 刘建立, 等. 表征土壤水分持留曲线的几种模型的适应性研究[J]. 土壤学报, 2002(04):498-504.
[16]van Genuchten M T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils[J]. Soil Science Society of AMERICA JOURNAL, 1980,44(5):892-898.