基于PSO-LSSVM算法的阶梯式溢洪道复氧率预测

刘洪滨

PDF(688 KB)
中国农村水利水电 ›› 2019 ›› (11) : 198-201.
水工建筑

基于PSO-LSSVM算法的阶梯式溢洪道复氧率预测

  • 刘洪滨
作者信息 +

Prediction of Re-aeration Rate of Stepped Spillway Based on PSO-LSSVM Algorithm

  • LIU Hong-bin
Author information +
稿件信息 +

摘要

最近,机器学习方法逐渐在水利工程中得到广泛运用。本研究将采用最小二乘支持向量机(LSSVM)方法,建立阶梯式溢洪道各种流态下复氧率的预测模型。采用粒子群优化算法(PSO)优化了LSSVM算法的参数(惩罚函数γ和核函数常数σ2),新的PSO-LSSVM模型预测精度相对于常用的BP模型明显提高。误差分析表明,在测试集上PSO-LSSVM模型的平均绝对百分比误差MAPE、均方差RMSE和平方相关系数R2分别为1.1000×10-3, 4.8996×10-4和9.9986×10-1。最后,采用平均影响值法评价了输入参数对复氧率的影响程度。

Abstract

Recently, machine learning methods have been widely used in hydraulic engineering. In this study, the least squares support vector machine (LSSVM) algorithm was used to establish a prediction model for the re-aeration rate of stepped spillway under various flow regimes. Particle swarm optimization (PSO) was used to optimize the parameters (the penalty parameter γ and kernel constant σ2) of the LSSVM algorithm. The prediction accuracy of the new PSO-LSSVM model was significantly improved compared with the commonly used BP model. Error analysis showed that the average absolute percentage error MAPE, root-mean-square error RMSE and square correlation coefficient R2 of PSO-LSSVM model on test set were 1.1000×10-3, 4.8996×10-4 and 9.9986×10-1, respectively. Finally, the effect of input parameters on the re-aeration rate was evaluated by means of the mean impact value method.

关键词

机器学习 / 最小二乘支持向量机 / 复氧率 / 粒子群优化 / 平均影响值

Key words

machine learning / least squares support vector machine / re-aeration rate / particle swarm optimization / mean impact value

引用本文

导出引用
刘洪滨. 基于PSO-LSSVM算法的阶梯式溢洪道复氧率预测[J].中国农村水利水电, 2019(11): 198-201
LIU Hong-bin. Prediction of Re-aeration Rate of Stepped Spillway Based on PSO-LSSVM Algorithm[J].China Rural Water and Hydropower, 2019(11): 198-201

参考文献

[1]Baylar, A.GEP modeling of oxygen transfer efficiency prediction in aeration cascades. KSCE Journal of Civil Engineering, 2011. 15(5): p. 799-804.
[2]范丽丽, et al., 水库深孔挑射出流对复氧的试验研究. 水科学进展, 2006. 17(2).
[3]肖海文, et al., 溶解氧对人工湿地处理受污染城市河流水体效果的影响. 环境科学, 2006. 27(12): p. 2426-2431.
[4]Baylar, A., M.E. Emiroglu, and T. Bagatur, An experimental investigation of aeration performance in stepped spillways. Water and Environment Journal, 2006. 20(1): p. 35-42.
[5]Roushangar, K., et al., Modeling Energy Dissipation over Stepped Spillways using Machine Learning Approaches. JOURNAL OF HYDROLOGY, 2013.
[6]Baylar, A.and M.E. Emiroglu, Study of aeration efficiency at stepped channels. Proceedings of the Institution of Civil Engineers-Water and Maritime Engineering, 2003. 156(September): p. 3-9.
[7]丁世飞, 齐丙娟, and 谭红艳, 支持向量机理论与算法研究综述.2011.
[8]官夏菲, et al., 基于 SVR-GA 算法的跌扩型消力池优化研究. 水力发电学报, 2018. 37(10): p. 66-75.
[9]AK, S.J., Least squares support vector machines. 2002: World Scientific.
[10]Hanbay, D., A. Baylar, and M. Batan, Prediction of aeration efficiency on stepped cascades by using least square support vector machines. Expert Systems with Applications, 2009. 36(3 PART 1): p. 4248-4252.
[11]龙文, 焦建军, and 龙祖强, 基于PSO优化LSSVM的未知模型混沌系统控制.物理学报, 2011. 60(11): p. 112-117.
[12]孙斌 and 姚海涛, 基于PSO优化LSSVM的短期风速预测.电力系统保护与控制, 2012. 40(5): p. 85-89.
[13]Baylar, A., D. Hanbay, and E. Ozpolat, Modeling Aeration Efficiency of Stepped Cascades by Using ANFIS. 2007. 35(2): p. 186-192.
[14]Moghadam, R.G., et al., Prediction of the hydraulic jump length on sloping rough beds using meta- heuristic neuro-fuzzy model and differential evolution algorithm. 2019. 11: p. 8-15.
[15]MATLAB神经网络43个案例分析.2013.
PDF(688 KB)

289

访问

0

引用

详细情况

段落导航
相关文章

/