多源卫星降水产品在不同省份的精度评估与比较分析

卫林勇 江善虎 任立良 张林齐 周梦瑶

PDF(8173 KB)
中国农村水利水电 ›› 2019 ›› (11) : 38-44.
水文水资源

多源卫星降水产品在不同省份的精度评估与比较分析

  • 卫林勇1,江善虎1,任立良2,张林齐2,周梦瑶1
作者信息 +

Evaluation and Comparison of Multi-Source Satellite Precipitation Products in Different Climate Regions over Mainland China

  • WEI Lin-yong1 ,JIANG Shan-hu1,2 ,REN Li-liang1,2 ,ZHANG Lin-qi 1 ,ZHOU Meng-yao1
Author information +
稿件信息 +

摘要

基于地面格网降水产品CGDPA(China Gauge-based Precipitation Daily Analysis dataset),利用4个统计指标、分类度量等方法评估和比较CHIRPS(Climate Hazards group InfraRed Precipitation with Station data)、CMORPH-BLD (Climate Prediction Center Morphing technique satellite–gauge merged)、PERSIANN-CDR (Remotely Sensed Information Using Artificial Neural Networks–Climate Data Record)、TRMM (Tropical Rainfall Measuring Mission) 3B42V7卫星数据源在不同省份不同尺度的降水监测能力。结果表明:1)江西月降水量最大值在6月份,其余在7月份达年内最大值;TRMM 3B42V7在不同省份捕捉月降水的性能最好。2)从降水量及相关系数分析,TRMM 3B42V7在5省均较好的估计四季降水。3)卫星降水产品与CGDPA的相关性在低降水估值地区较弱,在高降水地区相关性较强;根据相关系数空间分布和箱线图,PERSIANN-CDR相对适用于新疆、吉林,TRMM 3B42V7较适用于陕西、江西以及云南。

Abstract

Based on the China Gauge - based Precipitation Daily Analysis dataset ( CGDPA) of ground grid precipitation product,four statistical indicators and classification measures are used to evaluate and compare the rainfall monitoring capabilities of Climate Hazards group Infrared Precipitation with Station Data ( CHIRPS) ,Climate Prediction Center Morphing technique satellite-gauge merged ( CMORPH- BLD) ,Remotely Sensed Information Using Artificial Neural Networks - Climate Data Record ( PERSIANN - CDR) ,Tropical Rainfall Measuring Mission ( TRMM) 3B42V7 satellite data sources at different scales in different provinces. The results show that: ① The maximum monthly precipitation in Jiangxi is in June,and the rest reaches the maximum in July. TRMM 3B42V7 has the best performance in capturing monthly precipitation in different provinces. ② Based on an analysis of precipitation and correlation coefficients,TRMM 3B42V7 can better estimate the four seasons precipitation in 5 provinces. ③ The correlation between satellite precipitation products and CGDPA is weak in low precipitation estimation area,but strong in high precipitation area. According to the spatial distribution of the correlation coefficient and box chart,PERSIANN-CDR is suitable for Xinjiang and Jilin,while TRMM 3B42V7 is more suitable for Shanxi,Jiangxi and Yunnan.

关键词

CGDPA / 卫星数据源 / 统计指标 / 分类度量

Key words

CGDPA / Satellite dataset sources / Statistical indicators / classification measures

基金

“十三五”国家重点研发计划项目( 2016YFA0601504) ; 中央高校基本科研业务费项目( 2019B10414) ; 江苏省研 究生科研与实践创新计划项目( 2019B72614 /SJKY19 _ 0477) 。

引用本文

导出引用
卫林勇 江善虎 任立良 张林齐 周梦瑶. 多源卫星降水产品在不同省份的精度评估与比较分析[J].中国农村水利水电, 2019(11): 38-44
WEI Lin-yong, JIANG Shan-hu, REN Li-liang, ZHANG Lin-qi, ZHOU Meng-yao. Evaluation and Comparison of Multi-Source Satellite Precipitation Products in Different Climate Regions over Mainland China[J].China Rural Water and Hydropower, 2019(11): 38-44

参考文献

[1] BAI P,LIU X. Evaluation of Five Satellite-Based Precipitation Products in Two Gauge-Scarce Basins on the Tibetan Plateau[J]. Remote Sensing,2018,10( 8) . 
[2] Yordanova N,Guerova G,Stoycheva A. Application of GNSS meteorology for intense precipitation case studies in Bulgaria[C]∥ Egu General Assembly Conference. EGU General Assembly Conference Abstracts,2014. 
[3] YANG P,XIA J,ZHANG Y,et al. Drought assessment in northwest China during 1960 - 2013 using the standardized precipitation index [J]. Climate Research,2017,72. 
[4] TANG G,ZENG Z,MA M,et al. Can Near-Real-Time Satellite Precipitation Products Capture Rainstorms and Guide Flood Warning for the 2016 Summer in South China? [J]. IEEE Geoscience and Remote Sensing Letters,2017: 1-5. 
[5] 钟燕川,郭海燕,徐金霞,等.四川省泥石流活动与降水因子特征 [J].水土保持研究,2018,25( 6) : 390-396. 
[6] 邹文秀,韩晓增,江 恒,等. 东北黑土区降水特征及其对土壤水 分的影响[J]. 农业工程学报,2011,27( 9) : 196-202. 
[7] ZHAO Y,YANG Q,HAN X Y,et al. Spatial and temporal differences of extreme precipitation during 1961 - 2009 in Xinjiang[J]. China J Desert Res.,2014,34( 2) : 550-557. 
[8] PENG Y,XIA J,ZHANG Y,et al. Temporal and spatial variations of precipitation in Northwest China during 1960-2013[J]. Atmospheric Research,2017,183: 283-295. 
[9] 江善虎,任立良,雍 斌,等.TRMM 卫星降水数据在洣水流域径 流模拟中的应用[J]. 水科学进展,2014,25( 5) : 641-649. 
[10] GUO H,BAO A,LIU T,et al. Evaluation of persian-cdr for meteorological drought monitoring over China[J]. Remote Seusing, 2016,8( 5) : 379.
[11] JIANG S,REN L,YONG B,et al. Evaluation of high-resolution satellite precipitation products with surfacerain gauge observations from Laohahe Basin in northern China[J]. Water Science and Engineering,2010,3( 4) : 405-417. 
[12] 刘元波,傅巧妮,宋 平,等. 卫星遥感反演降水研究综述[J].地 球科学进展,2007,26( 11) : 1 162-1 172. 
[13] 杜灵通,田庆久,黄 彦,等.基于 TRMM 数据的山东省干旱监测 及其可靠性检验[J].农业工程学报,2012,28( 2) : 121-126. 
[14] Zeweldi D A,Gebremichael M. Evaluation of CMORPH Precipitation Products at Fine Space-Time Scales[J]. Journal of Hydrometeorology,2009,10( 1) : 300-307. 
[15] Ashouri H,Hsu K L,Sorooshian S,et al. PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies[J]. Bulletin of the American Meteorological Society,2015,96( 1) : 69-83. 
[16] Katsanos D,Retalis A,Michaelides S. Validation of a high-resolution precipitation database ( CHIRPS) over Cyprus for a 30-year period[J]. Atmospheric Research,2016,169: 439-464. 
[17] GAO F,ZHANG Y,CHEN Q,et al. Comparison of two long-term and high-resolution satellite precipitation datasets in Xinjiang,China[J]. Atmospheric Research,2018,212: 150-157. 
[18] 王兆礼,钟睿达,陈家超,等.TMPA 卫星遥感降水数据产品在中 国大陆的干旱效用评估[J].农业工程学报,2017,33( 19) : 163- 170. 
[19] Schneider U,Becker A,Peter Finger. GPCC”s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle[J]. Theoretical and Applied Climatology,2014,115( 1-2) : 15-40. 
[20] 王思梦,王大钊,黄 昌. GPM 卫星降水数据在黑河流域的适用 性评价[J].自然资源学报,2018,33( 10) : 1 847-1 860. 
[21] 徐高洪,汪青静.多卫星遥感降水产品在柬埔寨的应用比较分析 [J].人民长江,2018,49( 22) : 74-82. 
[22] 刘 瑜,吴裕珍,冯志州,等.多种卫星降水产品对中国极端降雨 反演效果评估[J].热带地理,2017,37( 3) : 417-433. 
[23] 陈爱军,孔 宇,陆大春.应用 CGDPA 评估中国大陆地区 IMERG 的降水估计精度[J].大气科学学报,2018,41( 6) : 797-806. 
[24] SHEN Y,XIONG A. Validation and comparison of a new gauge ‐ based precipitation analysis over mainland China[J]. International Journal of Climatology,2016,36( 1) : 252-265. 
[25] MIAO C,Ashouri H,Hsu K L,et al. Evaluation of the PERSIANN -CDR daily rainfall estimates in capturing the behavior of extreme precipitation events over China[J]. Journal of Hydrometeorology, 2015,16: 1 387-1 396. 
[26] Peterson P,Funk CC,Landsfeld MF,et al. The Climate Hazards Group InfraRed Precipitation with Stations ( CHIRPS) v2. 0 Dataset: 35 year Quasi-Global Precipitation Estimates for Drought Monitoring[C]∥AGU Fall Meeting Abstracts,2015. 
[27] 陈少丹,张利平,郭梦瑶,等.TRMM 卫星降水数据在区域干旱监 测中的适用性分析[J].农业工程学报,2018,34( 15) : 126-132. 
[28] 张秀红,张文江,蒋蕙如.基于水量平衡的青藏高原东南部卫星 降水产品质量评估与校正[J].地理与地理信息科学,2018,34 ( 6) : 34-41. 
[29] JIANG S,REN L,YONG B,et al. Evaluation of Latest TMPA and CMORPH Precipitation Products with Independent Rain Gauge Observation Networks over High - latitude and Low - latitude Basins in China[J]. Chinese Geogr,2016,26( 4) : 439-455. 
PDF(8173 KB)

347

访问

0

引用

详细情况

段落导航
相关文章

/