1.State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Nanjing Hydraulic Research Institute,
Nanjing 210029,China; 2.College of Water Conservancy and Hydropower Engineering,Hohai University,Nanjing 210024,China;
3.School of Water Resources and Hydropower Engineering,Wuhan University,Wuhan 430072,China
In this paper, the paddy fields in the Poyang Lake basin were the research object, "Luliangyou 996" early rice was used as a test material, using multi-factor randomized block design, the dynamic change characteristics of the rice′s leaf SPAD values along with growth progression under different irrigation patterns, nitrogen application levels and topdressing methods were studied, the interaction of water-nitrogen coupling on SPAD values and yield and the relationships between SPAD values and yield in each growth stage were analyzed, and influence mechanism of irrigation, fertilization and topdressing on rice′s leaf SPAD values were expounded. The results showed that, the influence of irrigation and topdressing on SPAD values was reflected in the stage of reproductive growth, while the amount of nitrogen applied was reflected in the whole growth period. Nitrogen application can significantly increase leaf SPAD values and yield, but the contribution of nitrogen fertilizer to production showed marginal effects. The three-time fertilization method can significantly delay the decline of SPAD values and improve crop yield. The interaction between irrigation mode, nitrogen application rate and topdressing method was not significant. Improving the leaf chlorophyll content of the leaves during the grain-filling stage is an effective method to stabilize or even increase production. From the perspective of water saving and increasing yield, the optimal field management measures are W1N2F2, and the leaf SPAD values in the grain-filling stage is maintained between 37-40.
ZHU Han, SHI Yuan-zhi, HONG Da-lin, CHENG Yi-fan, WANG Li.
Effects of Water and Fertilizer Application on Leaf SPAD Values and Yield of Rice[J].China Rural Water and Hydropower, 2019(11): 50-53
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 龚少红,崔远来,黄介生,等. 不同水肥处理条件下水稻生理指标 及产量变化规律[J]. 节水灌溉,2005( 2) : 1-4.
[2] 田亚芹,冯利平,邹海平,等. 不同水分和氮素处理对寒地水稻生 育及产量的影响[J]. 生态学报,2014,34( 23) : 6 864-6 871.
[3] 崔远来,李远华,吕国安,等. 不同水肥条件下水稻氮素运移与转 化规律研究[J]. 水科学进展,2004,15( 3) : 280-285.
[4] 郑世宗,卢 成,柯惠英. 不同水肥模式单季水稻生长特性研究 [J]. 中国农村水利水电,2007( 10) : 34-37.
[5] 时元智,崔远来,王 力,等. 氮磷调控及紫云英配施提高早稻冠 层特性和产量[J]. 农业工程学报,2014,30( 1) : 89-97.
[6] 徐俊增,彭世彰,魏 征,等. 不同供氮水平及水分调控条件下水 稻光合作用光响应特征[J]. 农业工程学报,2012,28( 2) : 72-76.
[7] 陈劲丰,时元智,崔远来,等. 不同水肥模式下水稻光合光响应特 性研究[J]. 中国农村水利水电,2015( 7) : 16-20.
[8] 徐 澜,高志强,安 伟,等. 冬麦春播条件下旗叶光合特性、叶 绿素荧光参数变化及其与产量的关系[J]. 应用生态学报,2016, 27( 1) : 133-142.
[9] 李 杰,冯跃华,牟桂婷,等. 基于 SPAD 值的水稻施氮叶值模型 构建及应用效果[J]. 中国农业科学,2017( 24) : 4 714-4 724.
[10] 石小虎,蔡焕杰. 基于叶片 SPAD 估算不同水氮处理下温室番 茄氮营养指数[J]. 农业工程学报,2018( 1) : 116-126.
[11] MARKWELL J,OSTERMAN J C,MITCHELL J L. Calibration of the Minolta SPAD- 502 leaf chlorophyll meter[J]. Photosynthesis Research,1995,46( 3) : 467-472.
[12] ERRECART P M,MNICA G. AGNUSDEI,LATTANZI F A,et al. Leaf nitrogen concentration and chlorophyll meter readings as predictors of tall fescue nitrogen nutrition status[J]. Field Crops Research,2012,129( 1) : 46-58.
[13] YANG H,YANG J,LU Y,et al. SPAD values and nitrogen nutrition index for the evaluation of rice nitrogen status[J]. Plant Production Science,2014,17( 1) : 81-92.
[14] LEMAIRE G,GASTAL F,SALETTE J. N uptake and distribution in plant canopies: Diagnosis of the nitrogen status in crops[M]. Berlin: Spriger,1997.
[15] 王 鑫,王梓橦,尤文强,等. 利用叶片正反面反射光谱估算叶 绿素含量[J]. 光谱学与光谱分析,2018( 8) : 2 524-2 528.
[16] BAIL M L,JEUFFROY M H,BOUCHARD C,et al. Is it possible to forecast the grain quality and yield of different varieties of winter wheat from Minolta SPAD meter measurements? [J]. European Journal of Agronomy,2005,23( 4) : 379-391.
[17] RAMESH K,CHANDRASEKARAN B,BALASUBRAMANIAN T N,et al. Chlorophyll dynamics in rice ( Oryza sativa) before and after flowering based on SPAD ( Chlorophyll) meter monitoring and its relation with grain yield[J]. Journal of Agronomy & Crop Science, 2010,188( 2) : 102-105.
[18] 邱 权,李吉跃,王军辉,等. 水肥耦合效应对楸树苗期叶片净 光合速率和 SPAD 值的影响[J]. 生态学报,2016,36( 11) : 3 459 -3 468.
[19] 李 静,李志军,张富仓,等. 水氮供应对温室黄瓜叶绿素含量 及光合速率的影响[J]. 干旱地区农业研究,2016,34( 5) : 198- 204.
[20] 董 博,张绪成,张东伟,等. 水氮互作对春小麦叶片叶绿素含 量及光合速率的影响[J]. 干旱地区农业研究,2012,30( 6) : 88- 93.
[21] CAI S,SHI H,PAN X,et al. Integrating ecological restoration of agricultural non - point source pollution in Poyang Lake basin in China[J]. Water,2017,9( 10) : 745.