针对一种桨栅呈辐状式分布的冷却塔用新型水轮机,本文设计出一种适用于该水轮机的特型蜗壳,该蜗壳在结构上首次采用由圆形截面向椭圆截面过渡的轴向出水方式,这种设计不仅能有效节省冷却塔内部空间,同时也具备可观的引水性能。本文蜗壳设计采用了理论分析和CFD数值模拟计算相结合的设计和优化方式,根据蜗壳纵向断面压力和速度分布图得出其断面处的压力和速度分布规律;结合蜗壳出口处速度矢量图,分析出口环面上标称圆圆周速度、随机点轴向速度和圆周分速度矩的分布特点,结果表明,该蜗壳的水力性能与理论设计相符,具有很高的实用价值。
Abstract
Aiming at a new type of hydraulic turbine with radial distribution of impellers for cooling towers, this paper designs a special volute suitable for the turbine, which, for the first time in structure, adopts the axial effluent transitioning from circular truncation to elliptical section, which not only can effectively save the interior space of the cooling tower, but also has considerable water diversion performance. In this paper, the design and optimization of the volute are based on the combination of theoretical analysis and CFD numerical simulation, and the pressure and velocity distribution of the volute sections are obtained according to the distribution diagram from CFD calculation. With the analysis of the velocity vectogram of volute outlet, the distribution characteristics of nominal circular circumference velocity, random point axial velocity and circumference velocity moment on ring surface of volute outlet are concluded. The results show that the hydraulic performance of the volute is consistent with the theoretical design and it has high practical value.
关键词
冷却塔 /
水轮机 /
轴向出水 /
蜗壳 /
CFD
{{custom_keyword}} /
Key words
cooling tower /
hydraulic turbine /
axial outflow /
volute /
CFD
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]屈波,丁惠华,屈晶钰,等.直驱于大型水冷塔风机的超低比转速涡轮机:, CN104265546A[P]. 2015. [2]Benra F K. Numerical and Experimental Investigation on the Flow Induced Oscillations of a Single-Blade Pump Impeller[J]. Journal of Fluids Engineering, 2006, 128(4):783-793. [3]费全昌.我国冷却塔应用现状及面临的挑战[J].电力勘测设计,2014(02):29-33. [4]刘佳佳,屈波,章志平,芦月,梅杰.集中式循环冷却水系统能量分析[J].水电能源科学,2017,35(09):161-164. [5]孟凤鸣.冷却塔影响评价技术分析[J].环境科学与管理,2008(11):182-186. [6]谭月普.冷却塔技术研究的发展及现状[J].制冷与空调(四川),2013,27(05):494-498. [7]张利平. 多冷却塔循环冷却水系统的优化设计[D].青岛科技大学,2014. [8]Haijiao Cui,Nianping Li,Xinlei Wang,Jinqing Peng,Yuan Li,Zhibin Wu. Optimization of reversibly used cooling tower with downward spraying[J]. Energy,2017,127 [9]周波,王志成,周长西.水力通风冷却塔的发展与应用现状[J].工业用水与废 水,2010,41(03):73-75. [10] Mariano Martín,Mónica Martín. Cooling limitations in power plants: Optimal multiperiod design of natural draft cooling towers[J]. Energy,2017,135. [11] 朱飞,郑源,范小娟,杨春霞,李江.冷却塔内小型混流式水轮机的设计及数值模拟[J].水电 能源科学,2013,31(07):165-168. [12]郑源,张丽敏,尹义武,李玺.冷却塔中新型混流式水轮机设计[J].排灌机械工程学报,2010,28(06):484-487. [13]王旭,周琰杰.CFD数值模拟水轮机蜗壳三维设计[J].机械设计与制造,2013(10):17-18+21. [14] 熊荣.老江底电站椭圆蜗壳的制作改进与软件开发[J].东方电气评论,2007(01):26-28. [15] N?M?恩多科,郑灿新.具有椭圆横截面蜗壳的计算公式[J].水利电力机械,1987(01):23-25. [16]胡佳奇.浅谈混流式水轮机蜗壳的结构设计[J].黑龙江科技信息,2012(11):71. [17]余先源.水轮机蜗壳的结构设计问题探究[J].价值工程,2010,29(36):189. [18]王福军. 计算流体动力学分析:CFD软件原理与应用[M]. 清华大学出版社, 2004.